【題目】在矩形ABCD中,AB=2,BC=6,直線EF經(jīng)過對角線BD的中點O,分別交邊AD,BC于點E,F,點G,H分別是OBOD的中點,當(dāng)四邊形EGFH為矩形時,則BF的長_________________.

【答案】

【解析】

根據(jù)矩形ABCD中,AB=2,BC=6,可求出對角線的長,再由點G、H分別是OB、OD的中點,可得GH=BD,從而求出GH的長,若四邊形EGFH為矩形時,EF=GH,可求EF的長,通過作輔助線,構(gòu)造直角三角形,由勾股定理可求出MF的長,最后通過設(shè)未知數(shù),列方程求出BF的長.

解:如圖:過點E作EM⊥BC,垂直為M,
矩形ABCD中,AB=2,BC=6,
∴AB=EM=CD=2,AD=BC=6,∠A=90°,OB=OD,
在Rt△ABD中,BD==2
又∵點G、H分別是OB、OD的中點,
∴GH=BD=,
當(dāng)四邊形EGFH為矩形時,GH=EF=,
在Rt△EMF中,F(xiàn)M==,
易證△BOF≌△DOE (AAS),
∴BF=DE,
∴AE=FC,
設(shè)BF=x,則FC=6-x,由題意得:x-(6-x)=,或(6-x)-x=,,
∴x=或x=,
故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABCRtABD中,,,AC、BD相交于點G,過點ACB的延長線于點E,過點BDA的延長線于點F,AE、BF相交于點H

1)證明:ΔABD≌△BAC

2)證明:四邊形AHBG是菱形.

3)若AB=BC,證明四邊形AHBG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線ACBD相交于點O,AB,OAaOBb,且ab滿足:

1)求菱形ABCD的面積;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十一黃金周期間,朱老師織織朋友去某影視城旅游.現(xiàn)有兩家旅行社.報價都為元.且提供服務(wù)完全相同.但針對組團(tuán)游的游客,甲旅行社表示,每人都按八折收費; 乙旅行社表示,若人數(shù)不超過人,每人都按八折收費.若超過人,則超出部分按七五折收費,假設(shè)組團(tuán)參加甲乙兩家旅行社旅游的人數(shù)均為人.

1)請分別寫出甲,乙兩家旅行社收取組團(tuán)游的總費用(元)與(人)之間的函數(shù)關(guān)系式.

2)如果朱老師和朋友一共有人去旅游.那你計算下,在甲、乙兩家旅行社中,朱老師應(yīng)選擇哪家?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有正方形ABCD和一個以O(shè)為直角頂點的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于M,N.

(1如圖1,若點O與點A重合,則OM與ON的數(shù)量關(guān)系是__________________;

(2如圖2,若點O正方形的中心(即兩對角線的交點,則(1中的結(jié)論是否仍然成立?請說明理由

(3如圖3,若點O在正方形的內(nèi)部(含邊界,當(dāng)OM=ON時,請?zhí)骄奎cO在移動過程中可形成什么圖形?

(4如圖4是點O在正方形外部的一種情況.當(dāng)OM=ON時,請你就“點O的位置在各種情況下(含外部移動所形成的圖形”提出一個正確的結(jié)論.(不必說理

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長度比梯子底端B離墻的距離大5.

1)這個云梯的底端B離墻多遠(yuǎn)?

2)如圖(2),如果梯子的頂端下滑了8mAC的長),那么梯子的底部在水平方向右滑動了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,歡歡和樂樂分別站在正方形的頂點和頂點處,歡歡以的速度走向終點,途中位置記為點;樂樂以的速度走向終點,途中位置記為.假設(shè)兩人同時出發(fā),兩人都到達(dá)終點時結(jié)束運動.已知正方形邊長為,點上,.記三角形的面積為,三角形的面積為.設(shè)出發(fā)時間為

1)如圖情況,用含的代數(shù)式表示下列線段的長度:

______;______ ______;______

2)如圖情況,他們出發(fā)多少秒后?

3)是否存在這樣的時刻,使得?若存在,請求出的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在坐標(biāo)平面內(nèi)ABC的頂點坐標(biāo)分別為A0,2),B3,3),C21),(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)

1)畫出ABC關(guān)于原點對稱的A1B1C1,并直接寫出點C1點的坐標(biāo);

2)畫出ABC繞點A順時針方向旋轉(zhuǎn)90°后得到的A2B2C2,并直接寫出C2點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有七個數(shù)將它們填人圖(個圓兩兩相交分成個部分)中,使得每個圓內(nèi)部的個數(shù)之積相等,設(shè)這個積為,如圖給出了一種填法,此時__________,在所有的填法中,的最大值為__________

查看答案和解析>>

同步練習(xí)冊答案