【題目】在矩形ABCD中,AB=2,BC=6,直線EF經(jīng)過對角線BD的中點O,分別交邊AD,BC于點E,F,點G,H分別是OB,OD的中點,當(dāng)四邊形EGFH為矩形時,則BF的長_________________.
【答案】或
【解析】
根據(jù)矩形ABCD中,AB=2,BC=6,可求出對角線的長,再由點G、H分別是OB、OD的中點,可得GH=BD,從而求出GH的長,若四邊形EGFH為矩形時,EF=GH,可求EF的長,通過作輔助線,構(gòu)造直角三角形,由勾股定理可求出MF的長,最后通過設(shè)未知數(shù),列方程求出BF的長.
解:如圖:過點E作EM⊥BC,垂直為M,
矩形ABCD中,AB=2,BC=6,
∴AB=EM=CD=2,AD=BC=6,∠A=90°,OB=OD,
在Rt△ABD中,BD==2,
又∵點G、H分別是OB、OD的中點,
∴GH=BD=,
當(dāng)四邊形EGFH為矩形時,GH=EF=,
在Rt△EMF中,F(xiàn)M==,
易證△BOF≌△DOE (AAS),
∴BF=DE,
∴AE=FC,
設(shè)BF=x,則FC=6-x,由題意得:x-(6-x)=,或(6-x)-x=,,
∴x=或x=,
故答案為:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC與Rt△ABD中,,,AC、BD相交于點G,過點A作交CB的延長線于點E,過點B作交DA的延長線于點F,AE、BF相交于點H.
(1)證明:ΔABD≌△BAC.
(2)證明:四邊形AHBG是菱形.
(3)若AB=BC,證明四邊形AHBG是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC和BD相交于點O,AB=,OA=a,OB=b,且a,b滿足:.
(1)求菱形ABCD的面積;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”黃金周期間,朱老師織織朋友去某影視城旅游.現(xiàn)有兩家旅行社.報價都為元.且提供服務(wù)完全相同.但針對組團(tuán)游的游客,甲旅行社表示,每人都按八折收費; 乙旅行社表示,若人數(shù)不超過人,每人都按八折收費.若超過人,則超出部分按七五折收費,假設(shè)組團(tuán)參加甲乙兩家旅行社旅游的人數(shù)均為人.
(1)請分別寫出甲,乙兩家旅行社收取組團(tuán)游的總費用(元)與(人)之間的函數(shù)關(guān)系式.
(2)如果朱老師和朋友一共有人去旅游.那你計算下,在甲、乙兩家旅行社中,朱老師應(yīng)選擇哪家?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有正方形ABCD和一個以O(shè)為直角頂點的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點M,N.
(1)如圖1,若點O與點A重合,則OM與ON的數(shù)量關(guān)系是__________________;
(2)如圖2,若點O在正方形的中心(即兩對角線的交點),則(1)中的結(jié)論是否仍然成立?請說明理由;
(3)如圖3,若點O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時,請?zhí)骄奎cO在移動過程中可形成什么圖形?
(4)如圖4是點O在正方形外部的一種情況.當(dāng)OM=ON時,請你就“點O的位置在各種情況下(含外部)移動所形成的圖形”提出一個正確的結(jié)論.(不必說理)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長度比梯子底端B離墻的距離大5米.
(1)這個云梯的底端B離墻多遠(yuǎn)?
(2)如圖(2),如果梯子的頂端下滑了8m(AC的長),那么梯子的底部在水平方向右滑動了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,歡歡和樂樂分別站在正方形的頂點和頂點處,歡歡以的速度走向終點,途中位置記為點;樂樂以的速度走向終點,途中位置記為.假設(shè)兩人同時出發(fā),兩人都到達(dá)終點時結(jié)束運動.已知正方形邊長為,點在上,.記三角形的面積為,三角形的面積為.設(shè)出發(fā)時間為:
(1)如圖情況,用含的代數(shù)式表示下列線段的長度:
______;______; ______;______;
(2)如圖情況,他們出發(fā)多少秒后?
(3)是否存在這樣的時刻,使得?若存在,請求出的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在坐標(biāo)平面內(nèi)△ABC的頂點坐標(biāo)分別為A(0,2),B(3,3),C(2,1),(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)
(1)畫出△ABC關(guān)于原點對稱的△A1B1C1,并直接寫出點C1點的坐標(biāo);
(2)畫出△ABC繞點A順時針方向旋轉(zhuǎn)90°后得到的△A2B2C2,并直接寫出C2點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有七個數(shù)將它們填人圖(個圓兩兩相交分成個部分)中,使得每個圓內(nèi)部的個數(shù)之積相等,設(shè)這個積為,如圖給出了一種填法,此時__________,在所有的填法中,的最大值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com