【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示,且頂點(diǎn)在網(wǎng)格格點(diǎn)上將△ABC向右平移7個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度得到△A1B1C1.(圖中每個(gè)小方格邊長(zhǎng)均為1個(gè)單位長(zhǎng)度),請(qǐng)解決下列問(wèn)題:

(1)在圖中畫(huà)出平移后的△A1B1C1;

(2)直接寫(xiě)出點(diǎn)B1、C1的坐標(biāo):B1   ,   ),C1      );

(3)填空:△ABC的面積是   (平方單位).

【答案】(1)見(jiàn)解析;(2)2,0,3,3; (3)3.5.

【解析】

(1)先根據(jù)圖形平移的方法,作出三角形各頂點(diǎn)平移后的對(duì)應(yīng)點(diǎn),再將對(duì)應(yīng)點(diǎn)連接,

(2)根據(jù)平面直角坐標(biāo)系直接可寫(xiě)出點(diǎn)的坐標(biāo),

(3)利用割補(bǔ)法進(jìn)行計(jì)算三角形的面積.

解:(1)如圖所示:△A1B1C1即為所求,


(2)B1(2,0),C1(3,3),
故答案為:2,0,3,3,

(3) △ABC的面積為:

故答案為:3.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=4 cm,BC=8 cm,點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)A即停止;同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止.點(diǎn)P,Q的速度的速度都是1 cm/s,連結(jié)PQ,AQ,CP,設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t(s).

(1)當(dāng)t為何值時(shí),四邊形ABQP是矩形?

(2)當(dāng)t為何值時(shí),四邊形AQCP是菱形?

(3)分別求出(2)中菱形AQCP的周長(zhǎng)和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC內(nèi)接于⊙O,過(guò)點(diǎn)A作直線EF.
(1)如圖①,AB為直徑,要使EF為⊙O的切線,還需添加的條件是(只需寫(xiě)出三種情況): ①;②;③
(2)如圖②,AB是非直徑的弦,∠CAE=∠B,求證:EF是⊙O的切線.
(3)如圖③,AB是非直徑的弦,∠CAE=∠ABC,EF還是⊙O的切線嗎?若是,請(qǐng)說(shuō)明理由;若不是,請(qǐng)解釋原因.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,直線y=x+3交x軸于A點(diǎn),交y軸于B點(diǎn),過(guò)A、B兩點(diǎn)的拋物線y=﹣x2+bx+c交x軸于另一點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn).

(1)求此拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一點(diǎn),(不與點(diǎn)A、B重合),過(guò)點(diǎn)P作x軸的垂線交x軸于點(diǎn)H,交直線AB于點(diǎn)F,作PG⊥AB于點(diǎn)G.求出△PFG的周長(zhǎng)最大值;
(3)在拋物線y=﹣x2+bx+c上是否存在除點(diǎn)D以外的點(diǎn)M,使得△ABM與△ABD的面積相等?若存在,請(qǐng)求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王在解關(guān)于x的方程3a-2x=15時(shí),誤將-2x看作2x,得方程的解x=3,

(1)求a的值;

(2)求此方程正確的解;

(3)若當(dāng)y=a時(shí),代數(shù)式的值為5,求當(dāng)y=-a時(shí),代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中AB∥CD,對(duì)角線AC,BD相交于O,點(diǎn)E,F(xiàn)分別為BD上兩點(diǎn),且BE=DF,∠AEF=∠CFB.

(1)求證:四邊形ABCD是平行四邊形;

(2)若AC=2OE,試判斷四邊形AECF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF;
(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊿中,,點(diǎn)分別在 邊上,且, .

⑴.求證:⊿是等腰三角形;

⑵.當(dāng) 時(shí),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由于過(guò)度采伐森林和破壞植被,我國(guó)部分地區(qū)頻頻遭受沙塵暴侵襲.近日A城氣象局測(cè)得沙塵暴中心在A城的正西方向240km的B處(如圖),以每小時(shí)12km的速度向北偏東60°方向移動(dòng).距沙塵暴中心150km的范圍為受影響區(qū)域.

(1)A城是否受到這次沙塵暴的影響?為什么?

(2)若A城受這次沙塵暴的影響,那么A城遭受沙塵暴的影響時(shí)間有多長(zhǎng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案