【題目】為了貫徹落實國家關(guān)于增強(qiáng)青少年體質(zhì)的計劃,鄂州市全面實施了義務(wù)教育學(xué)段中小學(xué)學(xué)生“飲用奶計劃”的營養(yǎng)工程.某牛奶供應(yīng)商擬提供A(原味)、B(草莓味)、C(核桃味)、D(菠蘿味)、E(香橙味)等五種口味的學(xué)生奶供學(xué)生選擇(所有學(xué)生奶盒形狀、大小相同),為了解對學(xué)生奶口味的喜好情況,某初級中學(xué)七年級(1)班李老師對全班同學(xué)進(jìn)行了調(diào)查統(tǒng)計,制成了如圖兩幅不完整的統(tǒng)計圖.
(1)該班五種口味的學(xué)生奶的喜好人數(shù)組成一組統(tǒng)計數(shù)據(jù),直接寫出這組數(shù)據(jù)的平均數(shù),并將折線統(tǒng)計圖補(bǔ)充完整.
(2)在進(jìn)行調(diào)查統(tǒng)計的第二天,李老師為班上每位同學(xué)發(fā)放一盒學(xué)生奶.喜好A味的小聰和喜好B味的小明等四位同學(xué)最后領(lǐng)取,剩余的學(xué)生奶放在同一紙箱里,分別有A味2盒,B味和C味各1盒,李老師從該紙箱里隨機(jī)取出兩盒學(xué)生奶.請你用列表法或畫樹狀圖的方法,求出這兩盒牛奶恰好同時是小聰和小明喜好的學(xué)生奶的概率.
【答案】
(1)解:由表可知A口味的有4人,B口味有12人,占全班30%,C口味8人,
則全班人數(shù)為 =40人,
∴D口味的有40×25%=10人,E口味的有40﹣(4+12+8+10)=6人,
則平均數(shù)為40÷5=8,
補(bǔ)全折線圖如下:
(2)解:設(shè)所剩學(xué)生奶分別用A1,A2,B,C表示,列表如下:
A1 | A2 | B | C | |
A1 | (A1,A2) | (A1,B) | (A1,C) | |
A2 | (A2,A1) | (A2,B) | (A2,C) | |
B | (B,A1) | (B,A2) | (B,C) | |
C | (C,A1) | (C,A2) | (C,B) |
由表可知,一共有12種情況,其中同時是小聰和小明喜好的學(xué)生奶的概率 =
【解析】(1)根據(jù)喜歡B類型的人數(shù)及所占比例可得出學(xué)生總數(shù);根據(jù)扇形統(tǒng)計圖所給出的數(shù)據(jù)求出喜歡D類型的人數(shù),再用總?cè)藬?shù)減去喜歡其它類型的人數(shù),得出喜歡E的人數(shù),再從條形統(tǒng)計圖上可直接得出喜好C學(xué)生奶口味的人數(shù);用總?cè)藬?shù)除以喜歡的五種類型,即可求出這組數(shù)據(jù)的平均數(shù);根據(jù)所得出的數(shù)據(jù)可將折線統(tǒng)計圖補(bǔ)充完整;
(2)設(shè)所剩學(xué)生奶分別用A1,A2,B,C表示,根據(jù)題意列出圖表,再根據(jù)概率公式即可求出所求答案.
【考點(diǎn)精析】掌握扇形統(tǒng)計圖和折線統(tǒng)計圖是解答本題的根本,需要知道能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地反映事物的變化情況,但是不能清楚地表示出在總體中所占的百分比.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn)若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動點(diǎn),則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB 和 CD 相交于點(diǎn) O,∠C=∠COA,∠D=∠BOD.求證:AC∥BD.(補(bǔ)全下面的說理過程,并在括號內(nèi)填上適當(dāng)?shù)睦碛桑?/span>
證明:∵∠C=∠COA,∠D=∠BOD( 。
又∠COA=∠BOD( )
∴∠C= .
∴AC∥BD.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,∠MON=80°,點(diǎn)A、B分別在射線OM、ON上移動,△AOB的角平分線AC與BD交于點(diǎn)P.試問:隨著點(diǎn)A、B位置的變化,∠APB的大小是否會變化?若保持不變,請求出∠APB的度數(shù);若發(fā)生變化,求出變化范圍.
(2)兩條相交的直線OX、OY,使∠XOY=n,在射線OX、OY上分別再任意取A、B兩點(diǎn),作∠ABY的平分線BD,BD的反向延長線交∠OAB的平分線于點(diǎn)C,隨著點(diǎn)A、B位置的變化,∠C的大小是否會變化?若保持不變,請求出∠C的度數(shù);若發(fā)生變化,求出變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心 點(diǎn),按順時針方向旋轉(zhuǎn) 度得到;
(3)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所學(xué)過的特殊四邊形中是勾股四邊形的兩種圖形的名稱____ ___,___ ;(2分)
(2)如圖,已知格點(diǎn)(小正方形的頂點(diǎn)),,,請你直接寫出所有以格點(diǎn)為頂點(diǎn),為勾股邊且對角線相等的勾股四邊形的頂點(diǎn)M的坐標(biāo)。(3分)
(3)如圖,將繞頂點(diǎn)按順時針方向旋轉(zhuǎn),得到,連結(jié),.求證:,即四邊形是勾股四邊形.(4分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極支持鄂州市創(chuàng)建國家衛(wèi)生城市工作,某商家計劃從廠家采購A,B兩種清潔產(chǎn)品共20件,產(chǎn)品的采購單價(元/件)是采購數(shù)量(件)的相關(guān)信息如下表所示.
采購數(shù)量(件) | 2 | 4 | 6 | … |
A產(chǎn)品單價(元) | 1460 | 1420 | 1380 | … |
B產(chǎn)品單價(元) | 1280 | 1260 | 1240 | … |
(1)設(shè)B產(chǎn)品的采購數(shù)量為x(件),采購單價為y1(元/件),求y1與x的關(guān)系式;
(2)經(jīng)商家與廠家協(xié)商,采購A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的 ,且B產(chǎn)品采購單價不高于1250元,求該商家共有幾種進(jìn)貨方案?
(3)該商家分別以1760元/件和1700元/件的銷售單價售出A,B兩種產(chǎn)品,且全部售完,在(2)的條件下,求采購A種產(chǎn)品多少件時總利潤最大?并求最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計劃為學(xué)校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.
(1)求A,B兩種品牌的足球的單價.
(2)該校打算通過“京東商城”網(wǎng)購20個A品牌的足球和3個B品牌的足球,“五一”期間商城打折促銷,其中A品牌打八折,B品牌打九折,問:學(xué)校購買打折后的足球所花的費(fèi)用比打折前節(jié)省了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“拼圖,推演,得到了整式的乘法的法則和乘法公式.教材第9章頭像拼圖這樣,借助圖形往往能把復(fù)雜的數(shù)學(xué)問題變得簡明、形象.
(分?jǐn)?shù)運(yùn)算)
怎樣理解?
從圖形的變化過程可以看出,長方形先被平均分成3份,取其中的2份(涂部分);再將涂色部分平均分成5份,取其中4份(涂部分).這樣,可看成原長方形被平均分成15份,取出其中8份,所以的占原長方形的,即.
(嘗試推廣)
(1)①類比分?jǐn)?shù)運(yùn)算,猜想的結(jié)果是____________;(a、b、c、d均為正整數(shù),且,);
②請用示意圖驗證①的猜想并用文字簡單解釋.
(2)①觀察下圖,填空:____________;
②若a、b均為正整數(shù)且,猜想的運(yùn)算結(jié)果,并用示意圖驗證你的猜想,同時加以簡單的文字解釋.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com