【題目】圖示為一座拱橋,當(dāng)水面寬AB為12m時(shí),橋洞頂部離水面的距離為2m.
(1)若圖中的拱形呈拋物線形狀,當(dāng)水面下降1m后,水面寬為多少?
(2)若圖中的拱形呈圓弧形狀,當(dāng)水面下降1m后,水面寬又為多少?
【答案】(1)m;(2)當(dāng)水面下降1m后,水面寬為m
【解析】
(1)先建立直角坐標(biāo)系,求出函數(shù)解析式,計(jì)算當(dāng)y=-1時(shí)的橫坐標(biāo)即可得到答案;
(2)設(shè)弧AB的圓心為O,過(guò)點(diǎn)O作AB的垂線,交弧于點(diǎn)D,垂足為點(diǎn)C,連接OB,設(shè)圓的半徑為x m,根據(jù)勾股定理列方程求出半徑,設(shè)水位下降1m后的水面寬為EF,交OD于點(diǎn)M,根據(jù)勾股定理即可求出答案.
(1)以AB的中垂線為y軸建立直角坐標(biāo)系,則點(diǎn)B(6,0),A(-6,0),
∵(0,2)在拋物線上,
∴設(shè)其拋物線為:y=ax2+2,
把(6,0)代入得:
0=a×62+2,
∴,
∴拋物線為:
當(dāng)y=-1時(shí),
有,
解得 ,
∴此時(shí)水面的寬為: (m);
(2)如圖,設(shè)弧AB的圓心為O,過(guò)點(diǎn)O作AB的垂線,交弧于點(diǎn)D,垂足為點(diǎn)C,連接OB,
則CD=2,BC=6.
設(shè)圓的半徑為x m,
則OC=(x-2)m
由勾股定理得:(x-2)2+62=x2
解得:x=10
設(shè)水位下降1m后的水面寬為EF,交OD于點(diǎn)M,則OM=10-3=7(m),
連接OF,由勾股定理得:
m.
∴當(dāng)水面下降1m后,水面寬為m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣6x﹣k2=0(k為常數(shù)).
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)x1,x2為方程的兩個(gè)實(shí)數(shù)根,且x1+2x2=14,試求出方程的兩個(gè)實(shí)數(shù)根和k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在矩形 ABCD 中,AB=4,AD=3,連接 AC,動(dòng)點(diǎn) Q 以每秒 1 個(gè)單位的速度沿 A→B→C 向點(diǎn) C 勻速運(yùn)動(dòng),同時(shí)點(diǎn) P 以每秒 2 個(gè)單位的速度沿 A→C→D 向點(diǎn) D 勻速運(yùn)動(dòng),連接 PQ,當(dāng)點(diǎn) P 到達(dá)終點(diǎn) D 時(shí),停止運(yùn) 動(dòng),設(shè)△APQ 的面積為 S,運(yùn)動(dòng)時(shí)間為 t 秒,則 S 與 t 函數(shù)關(guān)系的圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書店銷售復(fù)習(xí)資料,已知每本復(fù)習(xí)資料進(jìn)價(jià)為40元,市場(chǎng)調(diào)查發(fā)現(xiàn):若以每本50元銷售,平均每天可銷售90本,在此基礎(chǔ)上,若售價(jià)每提高1元,則平均每天少銷售3本.設(shè)漲價(jià)后每本的售價(jià)為元,書店平均每天銷售這種復(fù)習(xí)資料的利潤(rùn)為元.
(1)漲價(jià)后每本復(fù)習(xí)資料的利潤(rùn)為______元,平均每天可銷售______本;
(2)求與的函數(shù)關(guān)系式;
(3)當(dāng)復(fù)習(xí)資料每本售價(jià)為多少時(shí),平均每天的利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠A=90°,AB=AC=4,O是BC邊上的點(diǎn)且⊙O與AB、AC都相切,切點(diǎn)分別為D、E.
(1)求⊙O的半徑;
(2)如果F為上的一個(gè)動(dòng)點(diǎn)(不與D、E),過(guò)點(diǎn)F作⊙O的切線分別與邊AB、AC相交于G、H,連接OG、OH,有兩個(gè)結(jié)論:①四邊形BCHG的周長(zhǎng)不變,②∠GOH的度數(shù)不變.已知這兩個(gè)結(jié)論只有一個(gè)正確,找出正確的結(jié)論并證明;
(3)探究:在(2)的條件下,設(shè)BG=x,CH=y,試問(wèn)y與x之間滿足怎樣的函數(shù)關(guān)系,寫出你的探究過(guò)程并確定自變量x的取值范圍,并說(shuō)明當(dāng)x=y時(shí)F點(diǎn)的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是邊長(zhǎng)為2的正方形ABCD的對(duì)角線BD上的動(dòng)點(diǎn),過(guò)點(diǎn)P分別作PE⊥BC于點(diǎn)E,PF⊥DC于點(diǎn)F,連接AP并延長(zhǎng),交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EF交AH于點(diǎn)G,當(dāng)點(diǎn)P在BD上運(yùn)動(dòng)時(shí)(不包括B、D兩點(diǎn)),以下結(jié)論:①MF=MC;②AH⊥EF;③AP2=PMPH; ④EF的最小值是.其中正確的是________.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線y=ax2+c過(guò)點(diǎn)(-2,2)和點(diǎn)(4,5),點(diǎn)F(0,2)是y 軸上的定點(diǎn),點(diǎn)B是拋物線上除頂點(diǎn)外的任意一點(diǎn),直線l:y=kx+b經(jīng)過(guò)點(diǎn)B、F且交x軸于點(diǎn)A.
(1)求拋物線的解析式;
(2)①如圖1,過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,連接FC,求證:FC平分∠BFO;
②當(dāng)k= 時(shí),點(diǎn)F是線段AB的中點(diǎn);
(3)如圖2, M(3,6)是拋物線內(nèi)部一點(diǎn),在拋物線上是否存在點(diǎn)B,使△MBF的周長(zhǎng)最?若存在,求出這個(gè)最小值及直線l的解析式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過(guò)點(diǎn),.
(1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;
(2)M(m,0)為x軸上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N,
①點(diǎn)在線段上運(yùn)動(dòng),若以,,為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo);
②點(diǎn)在軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn),,中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱,,三點(diǎn)為“共諧點(diǎn)”.請(qǐng)直接寫出使得,,三點(diǎn)成為“共諧點(diǎn)”的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)圖象過(guò)A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C在y軸正半軸上,且AB=OC.
(1)求點(diǎn)C的坐標(biāo);
(2)求二次函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com