【題目】定義:有三個內(nèi)角相等凸四邊形叫三等角四邊形.

(1)三等角四邊形ABCD中,∠A=∠B=∠C,求∠A的取值范圍;
(2)如圖,折疊平行四邊形紙片DEBF,使頂點E,F(xiàn)分別落在邊BE,BF上的點A,C處,折痕分別為DG,DH.求證:四邊形ABCD是三等角四邊形.
(3)三等角四邊形ABCD中,∠A=∠B=∠C<90°,若CB=CD=4,則當AD的長為何值時,AB的長最大,其最大值是多少?(作圖解答)

【答案】
(1)

解:∵∠A=∠B=∠C,

∴3∠A+∠ADC=360°,

∴∠ADC=360°﹣3∠A.

∵0<∠ADC<180°,

∴0°<360°﹣3∠A<180°,

∴60°<∠A<120°;


(2)

解:證明:∵四邊形DEBF為平行四邊形,

∴∠E=∠F,且∠E+∠EBF=180°.

∵DE=DA,DF=DC,

∴∠E=∠DAE=∠F=∠DCF,

∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=180°,

∴∠DAB=∠DCB=∠ABC,

∴四邊形ABCD是三等角四邊形


(3)

解:①當60°<∠A<90°時,如圖1,

過點D作DF//AB,DE//BC,

∴四邊形BEDF是平行四邊形,∠DFC=∠B=∠DEA,

∴EB=DF,DE=FB,

∵∠A=∠B=∠C,∠DFC=∠B=∠DEA,

∴△DAE∽△DCF,AD=DE,DC=DF=4,

設AD=x,AB=y,

∴AE=y﹣4,CF=4﹣x,

∵△DAE∽△DCF,

= ,

=

∴y=﹣ x2+x+4=﹣ (x﹣2)2+5,

∴當x=2時,y的最大值是5,

即:當AD=2時,AB的最大值為5,

②當∠A=90°時,三等角四邊形是正方形,

∴AD=AB=CD=4,

③當90°<∠A<120°時,∠D為銳角,如圖2,

過點D作DE//BC,∠DCB=∠CBA,

∴四邊形BCDE是等腰梯形,

∴CD=EB=4,

∵AE=4﹣AB>0,

∴AB<4,

綜上所述,當AD=2時,AB的長最大,最大值是5


【解析】(1)根據(jù)四邊形的內(nèi)角和是360°,確定出∠A的范圍;(2)由四邊形DEBF為平行四邊形,得到∠E=∠F,且∠E+∠EBF=180°,再根據(jù)等角的補角相等,判斷出∠DAB=∠DCB=∠ABC,即可;(3)分三種情況分別討論計算AB的長,從而得出當AD=2時,AB最長;
【考點精析】根據(jù)題目的已知條件,利用平行四邊形的性質(zhì)和相似三角形的應用的相關(guān)知識可以得到問題的答案,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構(gòu)造相似三角形求解.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上的點A表示的數(shù)為6,點B表示的數(shù)為﹣4,點C到點A、點B的距離相等,動點P從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設運動時間為xx大于0)秒.

(1)點C表示的數(shù)是   

(2)當x=   秒時,點P到達點A處?

(3)運動過程中點P表示的數(shù)是   (用含字母x的式子表示);

(4)當P,C之間的距離為2個單位長度時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形的邊長.某一時刻,動點點出發(fā)沿方向以的速度向點勻速運動;同時,動點點出發(fā)沿方向以的速度向點勻速運動,問:

(1)經(jīng)過多少時間,的面積等于矩形面積的?

(2)是否存在時刻t,使以A,M,N為頂點的三角形與相似?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛轎車從甲地駛往乙地,到達乙地后立即返回甲地,速度是原來的1.5倍,往返共用t小時.一輛貨車同時從甲地駛往乙地,到達乙地后停止.兩車同時出發(fā),勻速行駛,設轎車行駛的時間為xh),兩車離開甲地的距離為ykm),兩車行駛過程中yx之間的函數(shù)圖象如圖所示.

(1)轎車從乙地返回甲地的速度為 km/t,t= h

(2)求轎車從乙地返回甲地時yx之間的函數(shù)關(guān)系式;

(3)當轎車從甲地返回乙地的途中與貨車相遇時,求相遇處到甲地的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小組計劃做一批中國結(jié),如果每人做5個,那么比計劃多了9個;如果每人做4個,那么比計劃少15個.該小組共有多少人?計劃做多少個中國結(jié)”?

根據(jù)題意,小明、小紅分別列出了尚不完整的方程如下:

小明:5x□(  )=4x□( 。 小紅:

(1)根據(jù)小明、小紅所列的方程,其中“□”中是運算符號,“( 。中是數(shù)字,請你分別指出未知數(shù)x、y表示的意義.

小明所列的方程中x表示   ,

小紅所列的方程中y表示   

(2)請選擇小明、小紅中任意一種方法,完整的解答該題目.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的方格紙中,ABC的頂點都在小正方形的頂點上,以小正方形互相垂直的兩邊所在直線建立直角坐標系.

(1)作出ABC關(guān)于y軸對稱的A1B1C1,其中A,B,C分別和A1,B1,C1對應;

(2)平移ABC,使得A點在x軸上,B點在y軸上,平移后的三角形記為A2B2C2,作出平移后的A2B2C2,其中A,B,C分別和A2,B2,C2對應;

(3)ABC的面積是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B分別為數(shù)軸上的兩點,A點對應的數(shù)為﹣20,B點對應的數(shù)為100.

(1)請寫出與A,B兩點距離相等的點M所對應的數(shù)   

(2)現(xiàn)有一只電子螞蟻PB出發(fā),以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度向右運動,x秒后兩只電子螞蟻在數(shù)軸上的C點相遇,請列方程求出x,并指出點C表示的數(shù).

(3)若當電子螞蟻PB點出發(fā)時,以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度也向左運動,y秒后兩只電子螞蟻在數(shù)軸上的D點相遇,請列方程求出y并指出點D表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為營造書香家庭,周末小亮和姐姐一起從家出發(fā)去圖書館借書,走了6min發(fā)現(xiàn)忘帶借書證,小亮立即騎路邊共享單車返回家中取借書證,姐姐以原來的速度繼續(xù)向前走,小亮取回借書證后騎單車原路原速前往圖書館,小亮追上姐姐后用單車帶著姐姐一起前往圖書館。已知騎車的速度是步行速度的2倍,如圖是小亮和姐姐距離家的路程y(m)與出發(fā)的時間x(min)的函數(shù)圖象,根據(jù)圖象解答下列問題:

(1)小亮在家停留了多長時間?

(2)求小亮騎車從家出發(fā)去圖書館時距家的路程 y(m)與出發(fā)時間 x(min)之間的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=ECD=90°,DAB邊上一點.

(1)求證:△ACE≌△BCD;

(2)AD=5,BD=12,求DE的長.

查看答案和解析>>

同步練習冊答案