【題目】如圖①②,的兩邊分別平行.
(1)在圖①中,與有什么數量關系?為什么?
(2)在圖②中,與有什么數量關系?為什么?
(3)由(1)(2)你能得出什么結論?用一句話概括你得到的結論.
【答案】(1)∠B=∠E,理由見解析;(2)∠B+∠E=180°,理由見解析;(3)如果兩個角的兩邊分別平行,那么這兩個角相等或互補.
【解析】
(1)由已知AB∥EF,DE∥BC,根據平行線的性質得:∠B=∠EOC,∠EOC=∠E,即可得出答案;
(2)由已知AB∥DE,EF∥BC,得:∠B=∠DOC,∠BOE+∠E=180°,即可得出答案;(3)由(1)和(2)得出結論如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補.
解:(1)∠B=∠E
理由:∵BA∥EF,BC∥DE,
∴∠B=∠EOC,∠EOC=∠E,
∴∠B=∠E;
(2)∠B+∠E=180°
理由:∵BA∥ED,BC∥EF,
∴∠B=∠DOC,∠BOE+∠E=180°,
∵∠DOC=∠BOE,
∴∠B+∠E=180°;
(3)如果兩個角的兩邊分別平行,那么這兩個角相等或互補.
科目:初中數學 來源: 題型:
【題目】如圖所示,以△ABC的兩邊AB、AC為邊向外作等邊△ABD和等邊△ACE,DC、BE相交于點O.
(1)求證:DC=BE;
(2)求∠BOC的度數;
(3)當∠BAC的度數發(fā)生變化時,∠BOC的度數是否變化?若不變化,請求出∠BOC的度數;若發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D是△ABC的BC邊上的一點,AD=BD,∠ADC=80°.
(1)求∠B的度數;
(2)若∠BAC=70°,判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:圓心在三角形的一邊上,與另一邊相切,且經過三角形一個頂點(非切點)的圓,稱為這個三角形圓心所在邊上的“伴隨圓”.
(1)如圖1,△ABC中,∠C=90°,AB=5,BC=3,則AC邊上的伴隨圓的半徑為 .
(2)如圖2,已知等腰△ABC,AB=AC=5,BC=6,畫草圖并直接寫出它的所有伴隨圓的半徑.
(3)如圖3,△ABC中,∠ACB=90°,點P在邊AB上,AP=2BP,D為AC中點,且∠CPD=90°.
①求證:△CPD的外接圓是△ABC某一條邊上的伴隨圓;
②求cos∠PDC的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先閱讀下面的例題,再解答后面的題目.
例:已知x2+y2﹣2x+4y+5=0,求x+y的值.
解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,
即(x﹣1)2+(y+2)2=0.
因為(x﹣1)2≥0,(y+2)2≥0,它們的和為0,
所以必有(x﹣1)2=0,(y+2)2=0,
所以x=1,y=﹣2.
所以x+y=﹣1.
題目:已知x2+4y2﹣6x+4y+10=0,求xy的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩組數據:98,99,99,100和98.5,99,99,99.5,則關于以下統(tǒng)計量說法不正確的是( )
A. 平均數相等
B. 中位數相等
C. 眾數相等
D. 方差相等
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年學校舉行足球聯賽,在第一階段的比賽中,每隊都進行了8場比賽,小虎足球隊勝了4場,平2場,負2場,得14分;小豹足球隊勝了6場,平1場,負1場,得19分.已知,記分規(guī)則中,負1場得0分.
(1)求勝1場、平1場各得多少分?
(2)足球聯賽結束后,小獅足球隊共參加了17場比賽,得了24分,且踢平場數是所勝場數的正整數倍,請你想一想,小獅足球隊所負場數有______種可能性.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校射擊隊從甲、乙、丙、丁四人中選拔一人參加市運動會射擊比賽,在選拔比賽中,每人射擊10次,他們10次成績的平均數及方差如下表所示:
甲 | 乙 | 丙 | 丁 | |
平均數/環(huán) | 9.5 | 9.5 | 9.6 | 9.6 |
方差/環(huán)2 | 5.1 | 4.7 | 4.5 | 5.1 |
請你根據表中數據選一人參加比賽,最合適的人選是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com