【題目】如圖,直線y=﹣x+n交x軸于點(diǎn)A,交y軸于點(diǎn)C(0,4),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)A,交y軸于點(diǎn)B(0,﹣2).點(diǎn)P為拋物線上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線PD,過(guò)點(diǎn)B作BD⊥PD于點(diǎn)D,連接PB,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)當(dāng)△BDP為等腰直角三角形時(shí),求線段PD的長(zhǎng).
【答案】(1)y=x2﹣x﹣2;(2)PD=.
【解析】
(1)由點(diǎn)C坐標(biāo),得直線方程為:y=-x+n=-x+4,從而求出點(diǎn)A坐標(biāo),把點(diǎn)A、B坐標(biāo)代入二次函數(shù)表達(dá)式即可求解;
(2)設(shè)點(diǎn)P(m,m2-m-2),當(dāng)△BDP為等腰直角三角形時(shí),BD=PD,即可求解.
(1)由點(diǎn)C坐標(biāo),得直線方程為:y=﹣x+n=﹣x+4,
令y=0,解得:x=3,則點(diǎn)A(3,0),
把點(diǎn)A、B坐標(biāo)代入二次函數(shù)表達(dá)式,
解得:b=﹣,c=﹣2,
則函數(shù)表達(dá)式為:y=x2﹣x﹣2;
(2)設(shè)點(diǎn)P(m,m2﹣m﹣2),
點(diǎn)B(0,﹣2),則點(diǎn)D(m,﹣2),
當(dāng)△BDP為等腰直角三角形時(shí),BD=PD,
即: m2﹣m﹣2﹣(﹣2)=m,
解得:m=,(m=0舍去),
PD=BD=m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△A′B′C是兩個(gè)完全重合的直角三角板,∠B=30°,斜邊長(zhǎng)為10cm.三角板A′B′C繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)A′落在AB邊上時(shí),CA′旋轉(zhuǎn)所構(gòu)成的扇形的弧長(zhǎng)為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長(zhǎng)為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)活動(dòng)課中,同學(xué)們準(zhǔn)備了一些等腰直角三角形紙片,從每張紙片中剪出一個(gè)扇形制作圓錐玩具模型.如圖,已知△ABC是腰長(zhǎng)為16cm的等腰直角三角形.
(1)在等腰直角三角形ABC紙片中,以C為圓心,剪出一個(gè)面積最大的扇形(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
(2)請(qǐng)求出所制作圓錐底面的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:
①b2﹣4ac>0;
②4a﹣2b+c<0;
③3b+2c<0;
④m(am+b)<a﹣b(m≠﹣1),
其中正確結(jié)論的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是AB延長(zhǎng)線上一點(diǎn),CD與⊙O相切于點(diǎn)E,AD⊥CD于點(diǎn)D.
(1)求證:AE平分∠DAC;
(2)若AB=4,∠ABE=60°.
①求AD的長(zhǎng);
②求出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在⊙O中,,弦CD與弦AB交于點(diǎn)F,連接BC,若∠ACD=60°,⊙O的半徑長(zhǎng)為2cm.
(1)求∠B的度數(shù)及圓心O到弦AC的距離;
(2)求圖中陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的頂點(diǎn)為C,對(duì)稱軸為直線,且經(jīng)過(guò)點(diǎn)A(3,-1),與y軸交于點(diǎn)B.
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,并說(shuō)明理由;
(3)經(jīng)過(guò)點(diǎn)A的直線交拋物線于點(diǎn)P,交x軸于點(diǎn)Q,若,試求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時(shí))與所用時(shí)間t(小時(shí))的函數(shù)關(guān)系如圖所示,其中60≤v≤120.
(1)直接寫(xiě)出v與t的函數(shù)關(guān)系式;
(2)若一輛貨車同時(shí)從乙地出發(fā)前往甲地,客車比貨車平均每小時(shí)多行駛20千米,3小時(shí)后兩車相遇.
①求兩車的平均速度;
②甲、乙兩地間有兩個(gè)加油站A、B,它們相距200千米,當(dāng)客車進(jìn)入B加油站時(shí),貨車恰好進(jìn)入A加油站(兩車加油的時(shí)間忽略不計(jì)),求甲地與B加油站的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com