【題目】 如圖,點E、F分別為正方形ABCD的邊BC、CD上一點,AC、BD交于點O,且∠EAF=45°,AE,AF分別交對角線BD于點M,N,則有以下結(jié)論:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上結(jié)論中,正確的個數(shù)有(。﹤.
A. 1B. 2C. 3D. 4
【答案】D
【解析】
如圖,把△ADF繞點A順時針旋轉(zhuǎn)90°得到△ABH,由旋轉(zhuǎn)的性質(zhì)得,BH=DF,AH=AF,∠BAH=∠DAF,由已知條件得到∠EAH=∠EAF=45°,根據(jù)全等三角形的性質(zhì)得到EH=EF,所以∠ANM=∠AEB,則可求得②正確;
根據(jù)三角形的外角的性質(zhì)得到①正確;
根據(jù)相似三角形的判定定理得到△OAM∽△DAF,故③正確;
根據(jù)相似三角形的性質(zhì)得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根據(jù)勾股定理得到AE=AN,再根據(jù)相似三角形的性質(zhì)得到EF=MN,于是得到S△AEF=2S△AMN.故④正確.
如圖,把△ADF繞點A順時針旋轉(zhuǎn)90°得到△ABH
由旋轉(zhuǎn)的性質(zhì)得,BH=DF,AH=AF,∠BAH=∠DAF
∵∠EAF=45°
∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°
∴∠EAH=∠EAF=45°
在△AEF和△AEH中
∴△AEF≌△AEH(SAS)
∴EH=EF
∴∠AEB=∠AEF
∴BE+BH=BE+DF=EF,
故②正確
∵∠ANM=∠ADB+∠DAN=45°+∠DAN,
∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH
∴∠ANM=∠AEB
∴∠ANM=∠AEB=∠ANM;
故③正確,
∵AC⊥BD
∴∠AOM=∠ADF=90°
∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO
∴△OAM∽△DAF
故①正確
連接NE,
∵∠MAN=∠MBE=45°,∠AMN=∠BME
∴△AMN∽△BME
∴
∴
∵∠AMB=∠EMN
∴△AMB∽△NME
∴∠AEN=∠ABD=45°
∵∠EAN=45°
∴∠NAE=NEA=45°
∴△AEN是等腰直角三角形
∴AE=
∵△AMN∽△BME,△AFE∽△BME
∴△AMN∽△AFE
∴
∴
∴
∴S△AFE=2S△AMN
故④正確
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=ax﹣a與雙曲線y=(k>0)交于A、B兩點,與x軸交于點D,與y軸交于點E,AC⊥y軸,垂足為點C.已知S△ACD=2,B(﹣1,m)
(1)直接寫出a與k的值.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1:y=ax2+bx﹣1經(jīng)過點A(﹣2,1)和點B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.
(1)求拋物線C1的表達式;
(2)直接用含t的代數(shù)式表達線段MN的長;
(3)當(dāng)△AMN是以MN為直角邊的等腰直角三角形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,防洪大堤的橫斷面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同學(xué)在大堤上A點處用高1.5m的測量儀測出高壓電線桿CD頂端D的仰角為30°,己知地面BC寬30m,求高壓電線桿CD的高度(結(jié)果保留三個有效數(shù)字,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC交于點D,E是BC的中點,連接BD,DE.
(1)若,求sinC;
(2)求證:DE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場第一次用元購進某款智能清潔機器人進行銷售,很快銷售一空,商家又用元第二次購進同款智能清潔機器人,所購進數(shù)量是第一次的倍,但單價貴了元.
(1)求該商家第一次購進智能清潔機器人多少臺?
(2)若所有智能清潔機器人都按相同的標(biāo)價銷售,要求全部銷售完畢的利潤率不低于(不考慮其它因素),那么每臺智能清潔機器人的標(biāo)價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,拋物線與x軸交于A,B兩點,點P在該拋物線上(P點與A. B兩點不重合),如果△ABP中PA與PB兩條邊的三邊滿足其中一邊是另一邊倍,則稱點P為拋物線的“好”點.
(1)命題:P(0,3)是拋物線的“好”點.該命題是_____( 真或假)命題.
(2)如圖2,已知拋物線C:與軸交于A,B兩點,點P(1,2)是拋物線C的“好”點,求拋物線C的函數(shù)表達式.
(3)在(2)的條件下,點Q在拋物線C上,求滿足條件S△ABQ=S△ABP的Q點(異于點P)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應(yīng)點A′的坐標(biāo)是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=8,連接BC。
(1)尺規(guī)作圖:作弦CD,使CD=BC(點D不與B重合),連接AD;(保留作圖痕跡,不寫作法)
(2)在(1)所作的圖中,求四邊形ABCD的周長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com