【題目】如圖,四邊形ABCD中,∠B=90°,AB=2,BC=1,CD=2,AD=3,連接AC.
(1)求AC的長;
(2)判斷三角形ACD的形狀,并求出四邊形ABCD的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,且AB=4,點(diǎn)C在半徑OA上(點(diǎn)C與點(diǎn)O、A不重合),過點(diǎn)C作AB的垂線交⊙O于點(diǎn)D,連接OD,過點(diǎn)B作OD的平行線交⊙O于點(diǎn)E,交CD的延長線于點(diǎn)F.
(1)若∠F=30°,請證明E是 的中點(diǎn);
(2)若AC=,求BEEF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=12cm,BC=9cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3厘米/秒的速度由B向C點(diǎn)運(yùn)動,同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動.
①若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,當(dāng)經(jīng)過1秒時(shí),△BPD與△CQP是否全等,請判斷并說明理由;
②若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度為多少時(shí),能夠使△BPD≌△CPQ?
(2)若點(diǎn)Q以②的運(yùn)動速度從點(diǎn)C出發(fā),點(diǎn)P以原來運(yùn)動速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC的三邊運(yùn)動,求經(jīng)過多長時(shí)間,點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上會相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點(diǎn)E從A出發(fā),沿A→B→C方向運(yùn)動,當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動,過點(diǎn)E作EF⊥AE交CD于點(diǎn)F,設(shè)點(diǎn)E運(yùn)動路程為x,CF=y,如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,給出下列結(jié)論:①a=3;②當(dāng)CF=時(shí),點(diǎn)E的運(yùn)動路程為或或,則下列判斷正確的是( 。
A. ①②都對 B. ①②都錯(cuò) C. ①對②錯(cuò) D. ①錯(cuò)②對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是AC上一點(diǎn),E是BD上一點(diǎn),∠A=∠CBD=∠DCE.
(1)求證:△ABC∽△CDE;
(2)若BD=3DE,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:
(1)已知三邊長求三角形面積,還需要知道什么?怎么作輔助線?
(2)解:作 ,所得三角形ACD和ABD的邊之間有什么重要關(guān)系?
(3)設(shè)BD=x,分別在兩個(gè)直角三角形中用含x的式子表示AD2,并完成解答,求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們用f(x)表示不大于x的最大整數(shù),例如:f(2.3)=2,f(4)=4,f(﹣1.5)=﹣2;用g(y)表示不小于y的最小整數(shù).例如:g(2.5)=3,g(5)=5,g(﹣3.5)=﹣3.解決下列問題:
(1)根據(jù)以上運(yùn)算規(guī)律:f(﹣5.4)=______,g(4.5)=______.
(2)若f(x)=3,則x的取值范圍是_______;若g(y)=﹣2,則y的取值范圍是______.
(3)已知x,y滿足,求x,y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=90°,AD∥BC,AB=4,點(diǎn)P是線段AD上的動點(diǎn),連接BP,CP,若△BPC周長的最小值為16,則BC的長為( 。
A.5B.6C.8D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解題過程:
===-2;
==.
請回答下列問題:
(1)觀察上面的解題過程,請直接寫出式子= ;
(2)觀察上面的解題過程,請直接寫出式子= ;
(3)利用上面所提供的解法,請求+···+的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com