【題目】如圖,△ABC在平面直角坐標(biāo)系中,點(diǎn)A2,﹣1),B3,2),C10).解答問題:請按要求對△ABC作如下變換.

1)將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△A1B1C1

2)以點(diǎn)O為位似中心,位似比為21,將△ABC在位似中心的異側(cè)進(jìn)行放大得到△A2B2C2

【答案】1)詳見解析;(2)詳見解析.

【解析】

(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、BC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的對應(yīng)點(diǎn)A1、B1C1的位置,然后順次連接即可;

(2)連接AO并延長至A2,使A2O=2AO,連接BO并延長至B2,使B2O=2BO,連接CO并延長至C2,使C2O=2CO,然后順次連接A2、B2、C2即可.

(1)如圖所示,△A1B1C1即為△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到的圖形;

(2)如圖所示,△A2B2C2即為△ABC在位似中心O的異側(cè)位似比為21的圖形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直于x軸,頂點(diǎn)A在函數(shù)y1x0)的圖象上,頂點(diǎn)B在函數(shù)y2x0)的圖象上,∠ABO30°,則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBCD,BD=AD,DG=DC,EF分別是BG,AC的中點(diǎn).

1)求證:DE=DF,DEDF;

2)連接EF,若AC=10,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任大叔決定在承包的荒山上種櫻桃樹,第一次用1000元購進(jìn)了一批樹苗,第二次又用1000元購進(jìn)該種樹苗,但這次每棵樹苗的進(jìn)價(jià)是第一次進(jìn)價(jià)的2,購進(jìn)數(shù)量比第次少了100棵;

(1)求第一次每棵樹苗的進(jìn)價(jià)是多少元?

(2)一年后,樹苗的成活率為85%,每棵櫻桃樹平均產(chǎn)櫻桃30,任大叔將兩批櫻桃樹所產(chǎn)櫻桃按同一價(jià)格全部銷售完畢后,獲利不低于89800,求每斤櫻桃的售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=ax+1x軸、y軸分別相交于A、B兩點(diǎn),與雙曲線y=x0)相交于點(diǎn)P,PCx軸于點(diǎn)C,且PC=2,點(diǎn)A的坐標(biāo)為(﹣2,0).

1)求雙曲線的解析式;

2)若點(diǎn)Q為雙曲線上點(diǎn)P右側(cè)的一點(diǎn),且QHx軸于H,當(dāng)以點(diǎn)QC、H為頂點(diǎn)的三角形與AOB相似時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一種商品,每件商品進(jìn)價(jià)30元試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)

與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);

(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價(jià)應(yīng)定為多少元?

(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時(shí)利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,∠ABC30°,BC2.將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)某個(gè)角度后得到△ABC,當(dāng)點(diǎn)A的對應(yīng)點(diǎn)A′落在AB邊上時(shí),陰影部分的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,以BC為直徑的⊙OAB于點(diǎn)D,EAC中點(diǎn).

1)求證:DE是⊙O的切線;

2)若AB10BC6,連接CDOE,交點(diǎn)為F,求OF的長.

查看答案和解析>>

同步練習(xí)冊答案