【題目】如圖,在△ABC中,AB=4,AC=3,以BC為邊在三角形外作正方形BCDE,對(duì)角線(xiàn)BD、CE交于點(diǎn)O,則線(xiàn)段AO的最大值為_____.
【答案】
【解析】
過(guò)O作OF⊥AO且使OF=AO,連接AF、CF,可知△AOF是等腰直角三角形,進(jìn)而可得AF=AO,根據(jù)正方形的性質(zhì)可得OB=OC,∠BOC=90°,由銳角互余的關(guān)系可得∠AOB=∠COF,進(jìn)而可得△AOB≌△COF,即可證明AB=CF,當(dāng)點(diǎn)A、C、F三點(diǎn)不共線(xiàn)時(shí),根據(jù)三角形的三邊關(guān)系可得AC+CF>AF,當(dāng)點(diǎn)A、C、F三點(diǎn)共線(xiàn)時(shí)可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.
如圖,過(guò)O作OF⊥AO且使OF=AO,連接AF、CF,
∴∠AOF=90°,△AOF是等腰直角三角形,
∴AF=AO,
∵四邊形BCDE是正方形,
∴OB=OC,∠BOC=90°,
∵∠BOC=∠AOF=90°,
∴∠AOB+∠AOC=∠COF+∠AOC,
∴∠AOB=∠COF,
又∵OB=OC,AO=OF,
∴△AOB≌△COF,
∴CF=AB=4,
當(dāng)點(diǎn)A、C、F三點(diǎn)不共線(xiàn)時(shí),AC+CF>AF,
當(dāng)點(diǎn)A、C、F三點(diǎn)共線(xiàn)時(shí),AC+CF=AC+AB=AF=7,
∴AF≤AC+CF=7,
∴AF的最大值是7,
∴AF=AO=7,
∴AO=.
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,進(jìn)價(jià)是元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是元時(shí),銷(xiāo)售量是件,而銷(xiāo)售單價(jià)每漲元,就會(huì)少售出件玩具.
(1)不妨設(shè)該種品牌玩具的銷(xiāo)售單價(jià)為元,請(qǐng)你分別用的代數(shù)式來(lái)表示銷(xiāo)售量件和銷(xiāo)售該品牌玩具獲得利潤(rùn)元,并把結(jié)果填寫(xiě)在表格中:
(2)在問(wèn)條件下,若商場(chǎng)獲得了元銷(xiāo)售利潤(rùn),求該玩具銷(xiāo)售單價(jià)應(yīng)定為多少元.
(3)在問(wèn)條件下,求商場(chǎng)銷(xiāo)售該品牌玩具獲得的最大利潤(rùn)是多少?此時(shí)定價(jià)多少元?
銷(xiāo)售單價(jià)(元) | |
銷(xiāo)售量(件) | |
銷(xiāo)售玩具獲得利潤(rùn)(元) |
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O直徑,P點(diǎn)為半徑OA上異于O點(diǎn)和A點(diǎn)的一個(gè)點(diǎn),過(guò)P點(diǎn)作與直徑AB垂直的弦CD,連接AD,作BE⊥AB,OE∥AD交BE于E點(diǎn),連接AE、DE、AE交CD于F點(diǎn).
(1)求證:DE為⊙O切線(xiàn);
(2)若⊙O的半徑為3,sin∠ADP=,求AD;
(3)請(qǐng)猜想PF與FD的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一次函數(shù)與圖像的交點(diǎn)在第一象限,則一次函數(shù)的圖像不經(jīng)過(guò)( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在AB為直徑的圓O上,AD與過(guò)點(diǎn)C的切線(xiàn)垂直,垂足為點(diǎn)D,AD交圓O于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)連接BE,若BE=6,sin∠CAD=,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我省某地區(qū)為了了解2017年初中畢業(yè)生畢業(yè)去向,對(duì)部分九年級(jí)學(xué)生進(jìn)行了抽樣調(diào)查,就九年級(jí)學(xué)生畢業(yè)后的四種去向:A.讀重點(diǎn)高中;B.讀職業(yè)高中;C.直接進(jìn)入社會(huì)就業(yè);D.其他(如出國(guó)等)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(如①圖,如②圖)
(1)該地區(qū)共調(diào)查了_____名九年級(jí)學(xué)生;
(2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;
(3)若該地區(qū)2017年初中畢業(yè)生共有4000人,請(qǐng)估計(jì)該地區(qū)今年初中畢業(yè)生中讀重點(diǎn)高中的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A,B的坐標(biāo)分別為(0,4),(﹣3,0),E為AB的中點(diǎn),EF∥AO交OB于點(diǎn)F,AF與EO交于點(diǎn)P,則EP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,六邊形ABCDEF的六個(gè)角都是120°,邊長(zhǎng)AB=1cm,BC=3cm,CD=3cm,DE=2cm,則這個(gè)六邊形的周長(zhǎng)是:__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com