【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙O于點E,∠E=30°,交AB于點D,連接AE,則SADC:SADE的比值為(
A.
B.
C.
D.1

【答案】C
【解析】解:過C作CF⊥AB于F,連接OE,設AC=a, ∵AB是⊙O的直徑,
∴∠ACB=90°,
∵∠B=∠E=30°,
∴∠A=60°,∠ACF=30°,CF= a,AB=2AC=2a,
∵CE平分∠ACB交⊙O于E,
= ,
∴OE⊥AB,
∴OE= AB=a
∴SADC:SADE= ADCF: ADOE= :2.
故選C.

過C作CF⊥AB于F,連接OE,設AC=a,求出CF,OE,根據(jù)SADC:SADE= ADCF: ADOE計算即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解答下列問題:
(1)已知一元二次方程ax2+bx+c=0(a≠0)有兩根x1 , x2(b2﹣4ac≥0).用求根公式寫出x1 , x2 , 并證明x1+x2=﹣ ,x1x 2=
(2)若一元二次方程x2+x﹣1=0的兩根為m,n,運用(1)中的結論,求 + 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察以下等式:

1個等式:++×=1,

2個等式:++×=1,

3個等式:++×=1,

4個等式:++×=1,

5個等式:++×=1,

……

按照以上規(guī)律,解決下列問題:

(1)寫出第6個等式:_____

(2)寫出你猜想的第n個等式:_____(用含n的等式表示),并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結論:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結論有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).

(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1
(2)請畫出△ABC關于原點對稱的△A2B2C2;并寫出點A2、B2、C2坐標;
(3)請畫出△ABC繞O順時針旋轉90°后的△A3B3C3;并寫出點A3、B3、C3坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AE⊥AB,且AE=AB,BC⊥CD且BC=CD,若點E、B、D到直線AC的距離分別為6,3,4,則圖中實現(xiàn)所圍成的圖像面積是( )

A. 50 B. 44 C. 38 D. 32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△DBE都是等腰直角三角形,點D在AC上,其中∠ABC=∠DBE=90°.

(1)求∠DCE的度數(shù);

(2)當AB=5,AD:DC=2:3時,求DE的大小;

(3)當點D在線段AC上運動時(D不與A重合),請寫出一個反映DA2,DC2,DB2之間關系的等式,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有甲、乙、丙三種糖果混合而成的什錦糖100千克,其中各種糖果的單價和千克數(shù)如表所示,商家用加權平均數(shù)來確定什錦糖的單價.

甲種糖果

乙種糖果

丙種糖果

單價元/千克

15

25

30

千克數(shù)

40

40

20

1求該什錦糖的單價.

2為了使什錦糖的單價每千克至少降低2元,商家計劃在什錦糖中加入甲、丙兩種糖果共100千克,問其中最多可加入丙種糖果多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=10,AD=4,點P在邊DC上,且△PAB是直角三角形,請在圖中標出符合題意的點P,并直接寫出PC的長.

查看答案和解析>>

同步練習冊答案