【題目】公元前6世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派有一種觀點(diǎn),即“萬(wàn)物皆數(shù)”,一切量都可以用整數(shù)或整數(shù)比(分?jǐn)?shù))表示,后來(lái),當(dāng)這一學(xué)派中的希帕索斯發(fā)現(xiàn),邊長(zhǎng)為1的正方形的對(duì)角線的長(zhǎng)度不能用整數(shù)或整數(shù)的比表示時(shí),畢達(dá)哥拉斯學(xué)派感到驚恐不安,由此,引發(fā)了第一次數(shù)學(xué)危機(jī),這兒“不能用整數(shù)或整數(shù)的比表示的數(shù)”指的是(

A.有理數(shù)B.無(wú)理數(shù)C.合數(shù)D.質(zhì)數(shù)

【答案】B

【解析】

根據(jù)無(wú)理數(shù)的概念作答.

解:整數(shù)屬于有理數(shù),整數(shù)的比是分?jǐn)?shù),屬于有理數(shù),故不能用整數(shù)或整數(shù)的比表示的數(shù)指的是無(wú)理數(shù).

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛汽車以35千米/時(shí)的速度勻速行駛,行駛路程S(千米)與行駛時(shí)間t(時(shí))之間的關(guān)系式為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣13)B(﹣4,0),C(0,0)

⑴畫出將△ABC向上平移1個(gè)單位長(zhǎng)度,再向右平移5個(gè)單位長(zhǎng)度后得到的△A1B1C1;

⑵畫出將△ABC繞原點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)90°得到△A2B2O;

⑶在x軸上存在一點(diǎn)P,滿足點(diǎn)PA1與點(diǎn)A2距離之和最小,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形的三個(gè)內(nèi)角之比為1∶3∶5,那么這個(gè)三角形的最大內(nèi)角為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>x分,滿分為100分,規(guī)定:85≤x≤100A級(jí),75≤x≤85B級(jí),60≤x≤75C級(jí),x60D級(jí).現(xiàn)隨機(jī)抽取福海中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:

1)在這次調(diào)查中,一共抽取了 名學(xué)生,α= %;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖中C級(jí)對(duì)應(yīng)的圓心角為 度;

4)若該校共有2000名學(xué)生,請(qǐng)你估計(jì)該校D級(jí)學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在等腰三角形ABC,AC=BC,分別以BCAC為直角邊向上作等腰直角三角形△BCD和△ACE,AEBD相交于點(diǎn)F,連接CF并延長(zhǎng)交AB于點(diǎn)G.求證:CG垂直平分AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9分)已知:如圖,平行四邊形ABCD中,OCD的中點(diǎn),連接AO并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)E

1)(4分)求證:△AOD≌△EOC;

2)(5分)連接ACDE,當(dāng)∠B=∠AEB= °時(shí),四邊形ACED是正方形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a、b為有理數(shù),若a2=b2,則ab的關(guān)系是

A.相等B.互為相反數(shù)C.互為倒數(shù)D.相等或互為相反數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知xm=2,xn=3,則x2m+n=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案