【題目】已知點在直線上,
(1)直線解析式為 ;
(2)畫出該一次函數(shù)的圖象;
(3)將直線向上平移個單位長度得到直線,與軸的交點的坐標為 ;
(4)直線與直線相交于點,點坐標為 ;
(5)三角形ABC的面積為 ;
(6)由圖象可知不等式的解集為 .
【答案】(1);(2)圖象見解析;(3);(4);(5);(6).
【解析】
(1)根據(jù)點在直線上,把點A代入解析式即可求解;
(2) 令,則;令,則,據(jù)此可求得函數(shù)圖像;
(3)根據(jù)平移規(guī)律可得的解析式為,進而得到;
(4) 解方程組,可得;進而得到;
(5) 由,,,可得;
(6)由圖像可知不等式的解集.
解:(1)點在直線上,
,即,
直線解析式為:;
故答案為:;
(2)令,則;令,則;
函數(shù)圖象如圖:
(3)將直線向上平移個單位長度得到直線,則的解析式為,
當時,,
解得,
;
故答案為:;
(4)由題可得,直線的解析式為,
解方程組,可得,
;
故答案為:;
(5)由,,,可得
;
故答案為:;
(6)由圖象可知不等式的解集為:.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】學校校內(nèi)有一塊如圖所示的三角形空地ABC,計劃將這塊空地建成一個花園,以美化校園環(huán)境,預計花園每平方米造價為60元,學校修建這個花園需要投資多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的面積為16cm2,對交線交于點O;以AB、AO為鄰邊作平行四邊AOC1B,對角線交于點O1,以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類推,則平行四邊形AO4C5B的面積為( )
A. cm2 B. 1cm2 C. 2cm2 D. 4cm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象的對稱軸是直線x=1,其圖象的一部分如圖所示則①abc<0;②a﹣b+c<0;③3a+c<0;④當﹣1<x<3時,y>0.其中判斷正確的有( )個.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,兩正方形在數(shù)軸上運動,起始狀態(tài)如圖所示.A、F表示的數(shù)分別為-2、10,大正方形的邊長為4個單位長度,小正方形的邊長為2個單位長度,兩正方形同時出發(fā),相向而行,小正方形的速度是大正方形速度的兩倍,兩個正方形從相遇到剛好完全離開用時2秒.完成下列問題:
(1)求起始位置D、E表示的數(shù);
(2)求兩正方形運動的速度;
(3)M、N分別是AD、EF中點,當正方形開始運動時,射線MA開始以15°/s的速度順時針旋轉(zhuǎn)至MD結(jié)束,射線NF開始以30°/s的速度逆時針旋轉(zhuǎn)至NE結(jié)束,若兩射線所在直線互相垂直時,求MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個斜坡上的點D處,某校數(shù)學課外興趣小組的同學正在測量旗桿的高度,在旗桿的底部A處測得點D的仰角為15°,AC=10米,又測得∠BDA=45°.已知斜坡CD的坡度為i=1: ,求旗桿AB的高度( ,結(jié)果精確到個位).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的動點(不與A,B重合),過M點作MN∥BC交AC于點N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN.令AM=x.
(1)用含x的代數(shù)式表示△MNP的面積S;
(2)當x為何值時,⊙O與直線BC相切;
(3)在動點M的運動過程中,記△MNP與梯形BCNM重合的面積為y,試求y關(guān)于x的函數(shù)表達式,并求x為何值時,y的值最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的方格紙中,小正方形的頂點叫做格點,△ABC是一個格點三角形(即△ABC的三個頂點都在格點上),根據(jù)要求回答下列問題:
(1)畫出△ABC先向左平移6格,再向上平移1格所得的△A′B′C′;
(2)利用網(wǎng)格畫出△ABC中BC邊上的高AD.
(3)過點A畫直線l,將△ABC分成面積相等的兩個三角形;
(4)在直線AB的右側(cè)格點圖中標出所有格點E(不包括點C),使S△ABE=S△ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,形如量角器的半圓O的直徑DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°, BC=12cm,半圓O以 2cm/s 的速度從左向右運動,在運動過程中,點 D 、E 始終在直線BC 上.設(shè)運動時間為t(s) ,當t=0s時,半圓O在△ABC的左側(cè),OC=8cm。
(1)當t =(s)時,⊙O與AC所在直線第一次相切,點 C 到直線 AB 的距離為;
(2)當 t為何值時,直線 AB 與半圓O所在的圓相切;
(3)當△ABC的一邊所在直線與圓O相切時,若⊙O與△ABC有重疊部分,求重疊部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com