【題目】如圖,拋物線軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且的平分線軸于點(diǎn),過點(diǎn)且垂直于的直線軸于點(diǎn),點(diǎn)軸下方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)軸,垂足為,交直線于點(diǎn)

(1)求拋物線的解析式;

(2)設(shè)點(diǎn)的橫坐標(biāo)為,當(dāng)時(shí),求的值;

(3)當(dāng)直線為拋物線的對(duì)稱軸時(shí),以點(diǎn)為圓心,為半徑作,點(diǎn)上的一個(gè)動(dòng)點(diǎn),求的最小值.

【答案】1yx2x3;(2;(3

【解析】

對(duì)于(1),結(jié)合已知先求出點(diǎn)B和點(diǎn)C的坐標(biāo),再利用待定系數(shù)法求解即可;

對(duì)于(2),在RtOAC中,利用三角函數(shù)的知識(shí)求出∠OAC的度數(shù),再利用角平分線的定義求出∠OAD的度數(shù),進(jìn)而得到點(diǎn)D的坐標(biāo);接下來求出直線AD的解析式,表示出點(diǎn)PH,F的坐標(biāo),再利用兩點(diǎn)間的距離公式可完成解答;對(duì)于(3),首先求出⊙H的半徑,在HA上取一點(diǎn)K,使得HK=14,此時(shí)K-,);然后由HQ2=HK·HA,得到△QHK∽△AHQ,再利用相似三角形的性質(zhì)求出KQ=AQ,進(jìn)而可得當(dāng)E、QK共線時(shí),AQ+EQ的值最小,據(jù)此解答.

1)由題意A,0),B(﹣30),C0,﹣3),設(shè)拋物線的解析式為yax+3)(x),把C0,﹣3代入得到a,∴拋物線的解析式為yx2x3

2)在RtAOC中,tanOAC,∴∠OAC60°.

AD平分∠OAC,∴∠OAD30°,∴ODOAtan30°=1,∴D0,﹣1),∴直線AD的解析式為yx1,由題意Pmm2m3),Hmm1),Fm,0).

FHPH,∴1m1﹣(m2m3

解得m(舍棄),∴當(dāng)FHHP時(shí),m的值為

3)如圖,∵PF是對(duì)稱軸,∴F,0),H,﹣2).

AHAE,∴∠EAO60°,∴EOOA3,∴E0,3).

C0,﹣3),∴HC2,AH2FH4,∴QHCH1,在HA上取一點(diǎn)K,使得HK,此時(shí)K).

HQ21HKHA1,∴HQ2HKHA,∴

∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQAQ,∴AQ+QEKQ+EQ,∴當(dāng)E、Q、K共線時(shí),AQ+QE的值最小,最小值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,已知EK垂直平分BC,垂足為D,ABEK相交于點(diǎn)F,連接CF.求證:∠AFE=CFD.

(2)如圖2,在RtGMN中,∠M=90°,PMN的中點(diǎn).

①用直尺和圓規(guī)在GN邊上求作點(diǎn)Q,使得∠GQM=PQN(保留作圖痕跡,不要求寫作法);

②在①的條件下,如果∠G=60°,那么QGN的中點(diǎn)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在□ABCD中,O是AC、BD的交點(diǎn),過點(diǎn)O 與AC垂直的直線交邊AD于點(diǎn)E,若□ABCD的周長為22cm,則△CDE的周長為( ).

A. 8cm B. 10cm C. 11cm D. 12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,每個(gè)小正方形的邊長均為1,則下列A、B、C、D四個(gè)圖中的三角形(陰影部分)與△EFG相似的是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠MAN=120°,AC平分∠MAN,點(diǎn)B、D分別在AN、AM上.

(1)如圖1,若∠ABC=∠ADC=90°,請(qǐng)你探索線段AD、AB、AC之間的數(shù)量關(guān)系,并證明之;

(2)如圖2,若∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,給出證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在正方形ABCD中,EAB上一點(diǎn),FAD延長線上一點(diǎn),且DFBE.求證:CECF;

2)如圖2,在正方形ABCD中,EAB上一點(diǎn),GAD上一點(diǎn),如果∠GCE45°,請(qǐng)你利用(1)的結(jié)論證明:GEBEGD

3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:

如圖3,在直角梯形ABCD中,AD∥BCBCAD),∠B90°,ABBC,EAB上一點(diǎn),且∠DCE45°,BE4DE="10," 求直角梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C是⊙O上一點(diǎn),點(diǎn)P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=4.

(1)求證:PC是⊙O的切線.

(2)求tan∠CAB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰△ABC的底邊BC=20,面積為120,點(diǎn)F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點(diǎn)DEG上運(yùn)動(dòng),則△CDF周長的最小值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCO中,O0,0),C03),Aa,0),(a≥3),以A為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)矩形ABCO得到矩形AFED

1)如圖1,當(dāng)點(diǎn)D落在邊BC上時(shí),求BD的長(用a的式子表示);

2)如圖2,當(dāng)a3時(shí),矩形AFED的對(duì)角線AE交矩形ABCO的邊BC于點(diǎn)G,連結(jié)CE,若CGE是等腰三角形,求直線BE的解析式;

3)如圖3,矩形ABCO的對(duì)稱中心為點(diǎn)P,當(dāng)P,B關(guān)于AD對(duì)稱時(shí),求出a的值,此時(shí)在x軸、y軸上是否分別存在M,N使得四邊形EFMN為平行四邊形,若存在直接寫出M,N坐標(biāo),不存在說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案