【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)=.
例如12可以分解成1×12,2×6或3×4,因?yàn)?2﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.
⑴如果一個(gè)正整數(shù)m是另外一個(gè)正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù).
求證:對任意一個(gè)完全平方數(shù)m,總有F(m)=1;
⑵如果一個(gè)兩位正整數(shù)t,t =10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為54,那么我們稱這個(gè)數(shù)t為“吉祥數(shù)”,求所有的“吉祥數(shù)”;
⑶在⑵所得“吉祥數(shù)”中,求 F(t)的最大值.
【答案】(1)見解析;(2)17,28,39;(3)
【解析】(1)對任意一個(gè)完全平方數(shù)m,設(shè)(為正整數(shù)),找出m的最佳分解,確定出的值即可;
(2)設(shè)交換t的個(gè)位上數(shù)與十位上的數(shù)得到的新數(shù)為t′,則,根據(jù)“吉祥數(shù)”的定義確定出x與y的關(guān)系式,進(jìn)而求出所求即可;
(3)利用“吉祥數(shù)”的定義分別求出各自的值,進(jìn)而確定出的最大值即可.
(1)對任意一個(gè)完全平方數(shù)m,設(shè)m=n2(n為正整數(shù)),
∵|n-n|=0,
∴n×n是m的最佳分解,
∴對任意一個(gè)完全平方數(shù)m,總有F(m)==1;
(2)設(shè)交換t的個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)為t′,則
∵t為“吉祥數(shù)”,
∴
∴
∵ x,y為自然數(shù),
∴“吉祥數(shù)”有:17,28,39,
(3)F(17)=,F(xiàn)(28)=,F(xiàn)(39)=,
∵>>,
∴所有“吉祥數(shù)”中,F(t)的最大值是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)A(a,a+5)在x軸上,則點(diǎn)A到原點(diǎn)的距離為( )
A.﹣5B.0C.5D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b經(jīng)過點(diǎn)A(5,0),B(1,4).
(1)求直線AB的表達(dá)式;
(2)若直線y=2x-4與直線AB相交于點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)根據(jù)圖象,寫出關(guān)于x的不等式kx+b>2x-4>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中, ,點(diǎn)是直線上一點(diǎn)(不與重合),以為一邊在 的右側(cè)作,使,連接.
(1)如圖1,當(dāng)點(diǎn)在線段上,如果,則 度;
(2)設(shè), .
①如圖2,當(dāng)點(diǎn)在線段上移動,則之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點(diǎn)在直線上移動,則之間有怎樣的數(shù)量關(guān)系?請畫出圖形并直接寫出相應(yīng)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的10個(gè)小球,其中紅球4個(gè),黑球6個(gè).
(1)先從袋子中取出m(m>1)個(gè)紅球,再從袋子中隨機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,請完成下列表格;
(2)先從袋子中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)黑球的概率等于,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4>=5,<-1.5>=-1.
解決下列問題:
(1)[-4.5]=___,<3.5>=___;
(2)若[x]=2,則x的取值范圍是___;若<y>=-1,則y的取值范圍是___.
(3)已知x,y滿足方程組求x,y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年4月,我市某中學(xué)舉行了“愛我中國朗誦比賽”活動,根據(jù)學(xué)生的成績劃分為A、B、C、D四個(gè)等級,并繪制了如下兩種不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,回答下列問題:
(1)參加朗誦比賽的學(xué)生共有人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中,m= , n=;C等級對應(yīng)扇形的圓心角為度;
(3)學(xué)校準(zhǔn)備從獲A等級的學(xué)生中隨機(jī)選取2人,參加市舉辦的朗誦比賽,請利用列表法或樹形圖法,求獲A等級的小明參加市朗誦比賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫出函數(shù)的圖象.
(1)函數(shù)的自變量x的取值范圍是________;
(2)列表(把表格補(bǔ)充完整)
x | …… | -2 | -1 | 0 | 1 | 2 | 3 | 4 | …… |
y |
(3)描點(diǎn)、連線
(4)結(jié)合圖象,寫出函數(shù)的一條性質(zhì)________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點(diǎn)D,使DB=AB,連接CD,以CD為直角邊作等腰直角三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2) 若AC=3cm,求BE的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com