【題目】在菱形 ABCD 中,對(duì)角線 AC、BD 相交于 O,如果菱形 ABCD 的周長(zhǎng)為 20,BD=6,則下列結(jié)論中, 正確的是( )
A.AC=8B.AC=4
C.菱形 ABCD 的面積為 48D.菱形ABCD 的高為 9.6
【答案】A
【解析】
根據(jù)菱形的周長(zhǎng),可先求出菱形的邊長(zhǎng),再根據(jù)對(duì)角線互相垂直平分的性質(zhì),運(yùn)用勾股定理即可求出AC的長(zhǎng)度,利用面積公式可計(jì)算出面積,利用等面積法可計(jì)算高的長(zhǎng)度.
解:∵菱形 ABCD 的周長(zhǎng)為 20
∴AD=AB=BC=CD=20÷4=5,
且BD⊥AC,
又∵BD=6
∴BO=3
∴在Rt△AOB中,AO=
∴AC=2AO=8,故A正確,B錯(cuò)誤;
菱形ABCD的面積為:,故C錯(cuò)誤;
設(shè)菱形的高為h,則
,
解得:h=4.8,故D錯(cuò)誤,
故答案為:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C是以點(diǎn)O為圓心,AB為直徑的半圓上一點(diǎn),且CO⊥AB,在OC兩側(cè)分別作矩形OGHI和正方形ODEF,且點(diǎn)I,F(xiàn)在OC上,點(diǎn)H,E在半圓上,可證:IG=FD.小云發(fā)現(xiàn)連接圖中已知點(diǎn)得到兩條線段,便可證明IG=FD.
請(qǐng)回答:小云所作的兩條線段分別是_____和_____;
證明IG=FD的依據(jù)是矩形的對(duì)角線相等,_____和等量代換.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(,),分別根據(jù)下列條件求出點(diǎn)P的坐標(biāo).
(1)點(diǎn)P在x軸上;
(2)點(diǎn)Q的坐標(biāo)為(1,5),直線PQ∥y軸.
(3)點(diǎn)P到x軸、y軸的距離相等;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用同樣規(guī)格的黑白兩色的正方形瓷磚鋪設(shè)矩形地面,請(qǐng)觀察下列圖形并解答有關(guān)問(wèn)題.
(1)在第n個(gè)圖中,第一橫行共_________ 塊瓷磚,第一豎列共有_________ 塊瓷磚;(均用含n的代數(shù)式表示)
(2)設(shè)鋪設(shè)地面所用瓷磚的總塊數(shù)為y,請(qǐng)寫(xiě)出y與(1)中的n的函數(shù)關(guān)系式;
(3)按上述鋪設(shè)方案,鋪一塊這樣的矩形地面共用了506塊瓷磚,求此時(shí)n的值;
(4)黑瓷磚每塊4元,白瓷磚每塊3元,問(wèn)題(3)中,共花多少元購(gòu)買(mǎi)瓷磚;
(5)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請(qǐng)通過(guò)計(jì)算說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向A點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由.
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形 ABCD 中,AD∥BC,對(duì)角線 AC、BD 相交于點(diǎn)O, △AOB 與△BOC 的面積分別為 4、8,則梯形ABCD 的面積等于___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE. 將△EDC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問(wèn)題發(fā)現(xiàn)
① 當(dāng)時(shí),;② 當(dāng)時(shí),
(2)拓展探究
試判斷:當(dāng)0°≤α<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情況給出證明.
(3)問(wèn)題解決
當(dāng)△EDC旋轉(zhuǎn)至A、D、E三點(diǎn)共線時(shí),直接寫(xiě)出線段BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)直角三角形紙片的頂點(diǎn)A在∠MON的邊OM上移動(dòng),移動(dòng)過(guò)程中始終保持AB⊥ON于點(diǎn)B,AC⊥OM于點(diǎn)A.∠MON的角平分線OP分別交AB、AC于D、E兩點(diǎn).
(1)點(diǎn)A在移動(dòng)的過(guò)程中,線段AD和AE有怎樣的數(shù)量關(guān)系,并說(shuō)明理由.
(2)點(diǎn)A在移動(dòng)的過(guò)程中,若射線ON上始終存在一點(diǎn)F與點(diǎn)A關(guān)于OP所在的直線對(duì)稱,猜想線段DF和AE有怎樣的關(guān)系,并說(shuō)明理由.
(3)若∠MON=45°,猜想線段AC、AD、OC之間有怎樣的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是一個(gè)單位長(zhǎng)度,在平面直角坐標(biāo)系內(nèi),△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(1,1),C(3,1).
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(2)畫(huà)出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,求線段BC掃過(guò)的面積(結(jié)果保留π).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com