【題目】拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求此拋物線的解析式;
(2)已知點D 在第四象限的拋物線上,求點D關(guān)于直線BC對稱的點D’的坐標(biāo);
(3)在(2)的條件下,連結(jié)BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標(biāo);若不存在,請說明理由.
【答案】(1)
(2)(0,-1)
(3)(1,0)(9,0)
【解析】
(1)將A(1,0)、C(0,3)兩點坐標(biāo)代入拋物線y=ax2+bx3a中,列方程組求a、b的值即可;
(2)將點D(m,m1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對稱性求點D關(guān)于直線BC對稱的點D'的坐標(biāo);
(3)分兩種情形①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過點C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問題.
解:(1)將A(1,0)、C(0,3)代入拋物線y=ax2+bx3a中,
得 ,
解得
∴y=x22x3;
(2)將點D(m,m1)代入y=x22x3中,得
m22m3=m1,
解得m=2或1,
∵點D(m,m1)在第四象限,
∴D(2,3),
∵直線BC解析式為y=x3,
∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=32=1,
∴點D關(guān)于直線BC對稱的點D'(0,1);
(3)存在.滿足條件的點P有兩個.
①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,
∵直線BD解析式為y=3x9,
∵直線CP過點C,
∴直線CP的解析式為y=3x3,
∴點P坐標(biāo)(1,0),
②連接BD′,過點C作CP′∥BD′,交x軸于P′,
∴∠P′CB=∠D′BC,
根據(jù)對稱性可知∠D′BC=∠CBD,
∴∠P′CB=∠CBD,
∵直線BD′的解析式為
∵直線CP′過點C,
∴直線CP′解析式為,
∴P′坐標(biāo)為(9,0),
綜上所述,滿足條件的點P坐標(biāo)為(1,0)或(9,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸相交于點A(-2,0)、B(4,0),與y軸相交于點C,連接BC,以線段BC為直徑作⊙M,過點C作直線CE∥AB,與拋物線和⊙M分別交于點D,E.
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)求線段DE的長;
(3)在BC下方的拋物線上有一點P,P點的橫坐標(biāo)是m,△PBC的面積為S,求出S與m之間的函數(shù)關(guān)系式,并求出當(dāng)m為何值時,S有最大值,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣1,5),B(0,0),C(4,0),D(2019,m),E(2020,n)在某二次函數(shù)的圖象上.下列結(jié)論:①圖象開口向上;②圖象的對稱軸是直線x=2;③m<n;④當(dāng)0<x<4時,y<0.其中正確的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假到了,即將迎來手機市場的銷售旺季.某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:
甲 | 乙 | |
進價(元/部) | 4000 | 2500 |
售價(元/部) | 4300 | 3000 |
該商場計劃投入15.5萬元資金,全部用于購進兩種手機若干部,期望全部銷售后可獲毛利潤不低于2萬元.(毛利潤=(售價﹣進價)×銷售量)
(1)若商場要想盡可能多的購進甲種手機,應(yīng)該安排怎樣的進貨方案購進甲乙兩種手機?
(2)通過市場調(diào)研,該商場決定在甲種手機購進最多的方案上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:
①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結(jié)論有( 。﹤.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交與A(1,0),B(﹣3,0)兩點,頂點為D,交y軸于C.
(1)求該拋物線的解析式.
(2)在拋物線的對稱軸上是否存在著一點M使得MA+MC的值最小,若存在求出M點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,△ABC的邊AC,BC分別與⊙O交于D,E,若E為的中點.
(1)求證:DE=EC;
(2)若DC=2,BC=6,求⊙O的半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對于拋物線y=ax2+bx+c(a、b、c是常數(shù),a≠0),若b2=ac,則稱該拋物線為黃金拋物線.例如:y=2x2﹣2x+2是黃金拋物線.
(1)請再寫出一個與上例不同的黃金拋物線的解析式;
(2)若拋物線y=ax2+bx+c(a、b、c是常數(shù),a≠0)是黃金拋物線,請?zhí)骄吭擖S金拋物線與x軸的公共點個數(shù)的情況(要求說明理由);
(3)將黃金拋物線y=2x2﹣2x+2沿對稱軸向下平移3個單位.
①直接寫出平移后的新拋物線的解析式;
②設(shè)①中的新拋物線與y軸交于點A,對稱軸與x軸交于點B,動點Q在對稱軸上,問新拋物線上是否存在點P,使以點P、Q、B為頂點的三角形與△AOB全等?若存在,直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,,于點D,將繞點B順時針旋轉(zhuǎn)得到
如圖2,當(dāng)時,求點C、E之間的距離;
在旋轉(zhuǎn)過程中,當(dāng)點A、E、F三點共線時,求AF的長;
連結(jié)AF,記AF的中點為P,請直接寫出線段CP長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com