【題目】已知點(diǎn)A(﹣15),B0,0),C4,0),D2019,m),E2020,n)在某二次函數(shù)的圖象上.下列結(jié)論:①圖象開(kāi)口向上;②圖象的對(duì)稱軸是直線x2;③mn;④當(dāng)0x4時(shí),y0.其中正確的個(gè)數(shù)是( 。

A.1B.2C.3D.4

【答案】D

【解析】

待定系數(shù)法求得拋物線的解析式,即可得到開(kāi)口方向,對(duì)稱軸方程,根據(jù)二次函數(shù)的性質(zhì)即可判斷.

解:設(shè)二次函數(shù)的解析式為yax2+bx+c

把點(diǎn)A(﹣1,5),B0,0),C4,0)代入得 ,

解得 ,

∴拋物線解析式為yx24x,

∴圖象開(kāi)口向上,對(duì)稱軸是直線x=﹣2,故①②正確;

220192020,

mn,故③正確;

∵拋物線開(kāi)口向上,與x軸的交點(diǎn)為(0,0),(4,0),

∴當(dāng)0x4時(shí),y0,故④正確;

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO直徑,ACO的弦,過(guò)O外的點(diǎn)DDEOA于點(diǎn)E,交AC于點(diǎn)F,連接DC并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)P,且D=2∠A,作CHAB于點(diǎn)H

1)判斷直線DCO的位置關(guān)系,并說(shuō)明理由;

2)若HB=2,cosD=,請(qǐng)求出AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 中,,點(diǎn) 的中點(diǎn).
1)如圖1E為線段DC上任意一點(diǎn),將線段繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到線段,連接 ,過(guò)點(diǎn)F,交直線 于點(diǎn) .判斷 的數(shù)量關(guān)系并加以證明;
2)如圖2,若為線段的延長(zhǎng)線上任意一點(diǎn),(1)中的其他條件不變,你在(1)中得出的結(jié)論是否發(fā)生改變,直接寫出你的結(jié)論,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C90°,點(diǎn)OAC上,以OA為半徑的⊙OAB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.

(1)判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由.

(2)AC3,BC4,OA1,求線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】折紙飛機(jī)是我們兒時(shí)快樂(lè)的回憶,現(xiàn)有一張長(zhǎng)為290mm,寬為200mm的白紙,如圖所示,以下面幾個(gè)步驟折出紙飛機(jī):(說(shuō)明:第一步:白紙沿著EF折疊,AB邊的對(duì)應(yīng)邊AB′與邊CD平行,將它們的距離記為x;第二步:將EM,MF分別沿著MH,MG折疊,使EMMF重合,從而獲得邊HGAB′的距離也為x),則PD=______mm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按要求解方程:

1)用配方法解6x2+x20

2)在解方程x22x2x時(shí),某同學(xué)的解答如下,請(qǐng)你指出解答中出現(xiàn)的錯(cuò)誤,并給出正確解題過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+3x軸交于點(diǎn)A3,0),B(﹣1,0),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)點(diǎn)P是直線AC上方的拋物線上一動(dòng)點(diǎn)(異于點(diǎn)A、C),連接BC,AC,PA,PB,PBAC交于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為m

①若CBD,DAP的面積分別為S1S2,當(dāng)S1S2最小時(shí),求點(diǎn)P的坐標(biāo);

②過(guò)點(diǎn)Px軸的垂線,交AC于點(diǎn)E.以原點(diǎn)O為旋轉(zhuǎn)中心,將線段PE順時(shí)針旋轉(zhuǎn)90°,得到線段PE.當(dāng)線段PE與直線PE有交點(diǎn)時(shí),設(shè)交點(diǎn)為F,求交點(diǎn)F的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線經(jīng)過(guò)A-1,0)、C0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.

1)求此拋物線的解析式;

2)已知點(diǎn)D 在第四象限的拋物線上,求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)D’的坐標(biāo);

3)在(2)的條件下,連結(jié)BD,問(wèn)在x軸上是否存在點(diǎn)P,使,若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過(guò)A,B,C三點(diǎn),點(diǎn)Cy軸正半軸上,已知A(﹣10),B3,0),OCAB

1)求點(diǎn)C的坐標(biāo).

2)求二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案