【題目】如圖,已知矩形ABCD滿(mǎn)足AB:BC=1: ,把矩形ABCD對(duì)折,使CD與AB重合,得折痕EF,把矩形ABFE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到矩形A′BF′E′,連結(jié)E′B,交A′F′于點(diǎn)M,連結(jié)AC,交EF于點(diǎn)N,連結(jié)AM,MN,若矩形ABCD面積為8,則△AMN的面積為( )
A.4
B.4
C.2
D.1
【答案】C
【解析】解:由折疊可得,BE= BC=AF,而AB:BC=1: ,
∴ = = ,
由旋轉(zhuǎn)可得,AF=A'E',AB=A'B,
∴ = ,
又∵ = ,
∴ = ,
又∵∠E'A'B=∠ABC=90°,
∴△E'A'B∽△ABC,
∴∠A'BE'=∠ACB,
∴AC∥BE',
連接BN,則△AMN的面積=△ABN的面積,
由題可得,N為AC的中點(diǎn),故△ABN的面積為△ABC面積的一半,
∴△AMN的面積為△ABC面積的一半,即矩形ABCD面積的四分之一,
∴△AMN的面積= ×8=2,
所以答案是:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行線(xiàn)之間的距離的相關(guān)知識(shí),掌握兩條平行線(xiàn)的距離:兩條直線(xiàn)平行,從一條直線(xiàn)上的任意一點(diǎn)向另一條直線(xiàn)引垂線(xiàn),垂線(xiàn)段的長(zhǎng)度,叫做兩條平行線(xiàn)的距離,以及對(duì)翻折變換(折疊問(wèn)題)的理解,了解折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)的連線(xiàn)的垂直平分線(xiàn),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、B、C是數(shù)軸上的三點(diǎn),點(diǎn)C表示的數(shù)是6,點(diǎn)B與點(diǎn)C之間的距離是4,點(diǎn)B與點(diǎn)A的距離是12,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn).
(1)數(shù)軸上點(diǎn)A表示的數(shù)為 .點(diǎn)B表示的數(shù)為 ;
(2)數(shù)軸上是否存在一點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離和為16,若存在,請(qǐng)求出此時(shí)點(diǎn)P所表示的數(shù);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度從C點(diǎn)向左運(yùn)動(dòng),點(diǎn)Q以每秒2個(gè)單位長(zhǎng)度從點(diǎn)B出發(fā)向左運(yùn)動(dòng),點(diǎn)R從點(diǎn)A以每秒5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),它們同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為t秒,請(qǐng)求點(diǎn)P與點(diǎn)Q,點(diǎn)R的距離相等時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.如圖 1,AB∥CD,直線(xiàn) EF 交 AB 于點(diǎn) E,交 CD 于點(diǎn) F,點(diǎn) G 在 CD 上,點(diǎn) P在直線(xiàn) EF 左側(cè),且在直線(xiàn) AB 和 CD 之間,連接 PE,PG.
(1) 求證: ∠EPG=∠AEP+∠PGC;
(2) 連接 EG,若 EG 平分∠PEF,∠AEP+ ∠ PGE=110°,∠PGC=∠EFC,求∠AEP 的度數(shù).
(3) 如圖 2,若 EF 平分∠PEB,∠PGC 的平分線(xiàn)所在的直線(xiàn)與 EF 相交于點(diǎn) H,則∠EPG 與∠EHG之間的數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線(xiàn)經(jīng)過(guò)A(﹣4,0),B(0,﹣4),C(2,0)三點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線(xiàn)上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料并完成任務(wù).
萊昂哈德·歐拉是18世紀(jì)數(shù)學(xué)界最杰出的人物之一,瑞士著名的數(shù)學(xué)家、物理學(xué)家,他不但為數(shù)學(xué)界作出貢獻(xiàn),更把整個(gè)數(shù)學(xué)推至物理的領(lǐng)域;同時(shí),也是數(shù)學(xué)史上研究成果最多的數(shù)學(xué)家,平均每年寫(xiě)出八百多頁(yè)的論文,還寫(xiě)了大量的力學(xué)、分析學(xué)、幾何學(xué)等的課本,《無(wú)窮小分析引論》《微分學(xué)原理》《積分學(xué)原理》等都成為數(shù)學(xué)界中的經(jīng)典著作.因此,被稱(chēng)為歷史上最偉大的兩位數(shù)學(xué)家之一(另一位是卡爾·弗里德里克·高斯).在數(shù)學(xué)成就上,歐拉最先把關(guān)于的多項(xiàng)式用記號(hào)的形式來(lái)表示(可用其他字母代替,但不同的字母表示不同的多項(xiàng)式),例如,當(dāng)時(shí),多項(xiàng)式的值用來(lái)表示,即;當(dāng)時(shí),多項(xiàng)式的值用來(lái)表示,記為.
任務(wù):
已知;.
請(qǐng)你根據(jù)材料中代入求值的方法解決下列問(wèn)題:
(1)求的值;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面上,將邊長(zhǎng)相等的正三角形、正方形、正五邊形、正六邊形的一邊重合并疊在一起,如圖,則∠3+∠1﹣∠2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校準(zhǔn)備購(gòu)進(jìn)一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價(jià)各是多少元;
(2)學(xué)校準(zhǔn)備購(gòu)進(jìn)這兩種型號(hào)的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,問(wèn)A型節(jié)能燈最多可以買(mǎi)多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)﹣2a3b(﹣4a2b)÷6a4b2
(2)
(3)
(4)(2a﹣1)(a﹣4)﹣(a+3)(a﹣4)
(5)(x﹣3y+4)(x+3y﹣4)
(6)(a+2b)(a﹣2b)(a2﹣4b2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,DH⊥AB于點(diǎn)H,連接OH,求證:∠DHO=∠DCO.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com