【題目】如圖,已知直線y=kx+6與拋物線y=ax2+bx+c相交于A,B兩點(diǎn),且點(diǎn)A(1,4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上.
(1)求拋物線的解析式;
(2)在(1)中拋物線的第三象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo).
【答案】(1)y=﹣x2+2x+3;(2)存在,;(3)①;②Q點(diǎn)坐標(biāo)為(0,)或(0, )或(0,1)或(0,3).
【解析】
(1)用待定系數(shù)法求解析式;(2)作PM⊥x軸于M,作PN⊥y軸于N,當(dāng)∠POB=∠POC時(shí),△POB≌△POC,設(shè)P(m,m),則m=﹣m2+2m+3,可求m;(3)分類討論:①如圖,當(dāng)∠Q1AB=90°時(shí),作AE⊥y軸于E,證△DAQ1∽△DOB,得,即;②當(dāng)∠Q2BA=90°時(shí),∠DBO+∠OBQ2=∠OBQ2+∠O Q2B=90°,證△BOQ2∽△DOB,得,;③當(dāng)∠AQ3B=90°時(shí),∠AEQ3=∠BOQ3=90°,證△BOQ3∽△Q3EA,,即;
解:(1)把A(1,4)代入y=kx+6,
∴k=﹣2,
∴y=﹣2x+6,
由y=﹣2x+6=0,得x=3
∴B(3,0).
∵A為頂點(diǎn)
∴設(shè)拋物線的解析為y=a(x﹣1)2+4,
∴a=﹣1,
∴y=﹣(x﹣1)2+4=﹣x2+2x+3
(2)存在.
當(dāng)x=0時(shí)y=﹣x2+2x+3=3,
∴C(0,3)
∵OB=OC=3,OP=OP,
∴當(dāng)∠POB=∠POC時(shí),△POB≌△POC,
作PM⊥x軸于M,作PN⊥y軸于N,
∴∠POM=∠PON=45°.
∴PM=PN
∴設(shè)P(m,m),則m=﹣m2+2m+3,
∴m=,
∵點(diǎn)P在第三象限,
∴P(,).
(3)①如圖,當(dāng)∠Q1AB=90°時(shí),作AE⊥y軸于E,
∴E(0,4)
∵∠DA Q1=∠DOB=90°,∠AD Q1=∠BDO
∴△DAQ1∽△DOB,
∴,即,
∴DQ1=,
∴OQ1=,
∴Q1(0,);
②如圖,
當(dāng)∠Q2BA=90°時(shí),∠DBO+∠OBQ2=∠OBQ2+∠O Q2B=90°
∴∠DBO=∠O Q2B
∵∠DOB=∠B O Q2=90°
∴△BOQ2∽△DOB,
∴,
∴,
∴OQ2=,
∴Q2(0,);
③如圖,當(dāng)∠AQ3B=90°時(shí),∠AEQ3=∠BOQ3=90°,
∴∠AQ3E+∠E AQ3=∠AQ3E+∠B Q3O=90°
∴∠E AQ3=∠B Q3O
∴△BOQ3∽△Q3EA,
∴,即,
∴OQ32﹣4OQ3+3=0,
∴OQ3=1或3,
∴Q3(0,1)或(0,3).
綜上,Q點(diǎn)坐標(biāo)為(0,)或(0,)或(0,1)或(0,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“美”、“麗”、“光”、“明”的四個(gè)小球,除漢字不同之外,小球沒(méi)有任何區(qū)別,每次摸球前先攪拌均勻再摸球.
(1)若從中任取一個(gè)球,求摸出球上的漢字剛好是“美”的概率;
(2)甲從中任取一球,不放回,再?gòu)闹腥稳∫磺,?qǐng)用樹(shù)狀圖或列表法,求甲取出的兩個(gè)球上的漢字恰能組成“美麗”或“光明”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c 為常數(shù),且a≠0)的圖像上部分點(diǎn)的橫坐標(biāo)x和縱
坐標(biāo)y的對(duì)應(yīng)值如下表
x | … | -1 | 0 | 1 | 2 | 3 | … |
y | … | -3 | -3 | -1 | 3 | 9 | … |
關(guān)于x的方程ax2+bx+c=0一個(gè)負(fù)數(shù)解x1滿足k<x1<k+1(k為整數(shù)),則k=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
工廠加工某種新型材料,首先要將材料進(jìn)行加溫處理,使這種材料保持在一定的溫度范圍內(nèi)方可進(jìn)行繼續(xù)加工處理這種材料時(shí),材料溫度是時(shí)間的函數(shù)下面是小明同學(xué)研究該函數(shù)的過(guò)程,把它補(bǔ)充完整:
在這個(gè)函數(shù)關(guān)系中,自變量x的取值范圍是______.
如表記錄了17min內(nèi)10個(gè)時(shí)間點(diǎn)材料溫度y隨時(shí)間x變化的情況:
時(shí)間 | 0 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | |
溫度 | 15 | 24 | 42 | 60 | m |
上表中m的值為______.
如圖,在平面直角坐標(biāo)系xOy中,已經(jīng)描出了上表中的部分點(diǎn)根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象.
根據(jù)列出的表格和所畫的函數(shù)圖象,可以得到,當(dāng)時(shí),y與x之間的函數(shù)表達(dá)式為______,當(dāng)時(shí),y與x之間的函數(shù)表達(dá)式為______.
根據(jù)工藝的要求,當(dāng)材料的溫度不低于時(shí),方可以進(jìn)行產(chǎn)品加工,在圖中所示的溫度變化過(guò)程中,可以進(jìn)行加工的時(shí)間長(zhǎng)度為______min.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家計(jì)劃2035年前實(shí)施新能源汽車,某公司為加快新舊動(dòng)能轉(zhuǎn)換,提高公司經(jīng)濟(jì)效益,決定對(duì)近期研發(fā)出的一種新型能源產(chǎn)品進(jìn)行降價(jià)促銷.根據(jù)市場(chǎng)調(diào)查:這種新型能源產(chǎn)品銷售單價(jià)定為200元時(shí),每天可售出300個(gè);若銷售單價(jià)每降低1元,每天可多售出5個(gè).已知每個(gè)新型能源產(chǎn)品的成本為100元.
問(wèn):(1)設(shè)該產(chǎn)品的銷售單價(jià)為元,每天的利潤(rùn)為元.則_________(用含的代數(shù)式表示)
(2)這種新型能源產(chǎn)品降價(jià)后的銷售單價(jià)為多少元時(shí),公司每天可獲利32000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A,B的坐標(biāo)分別為(4,0),(3,2).
(1)畫出△AOB關(guān)于原點(diǎn)O對(duì)稱的圖形△COD;
(2)將△AOB繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△EOF,畫出△EOF;
(3)點(diǎn)D的坐標(biāo)是 ,點(diǎn)F的坐標(biāo)是 ,此圖中線段BF和DF的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,正方形ABCD在直角坐標(biāo)系中,其中AB邊在y軸上,其余各邊均與坐標(biāo)軸平行,直線l:y=x﹣5沿y軸的正方向以每秒1個(gè)單位的速度平移,在平移的過(guò)程中,該直線被正方形ABCD的邊所截得的線段長(zhǎng)為m,平移的時(shí)間為t(秒),m與t的函數(shù)圖象如圖2所示,則圖2中b的值為( 。
A.3B.5C.6D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,與BA的延長(zhǎng)線交于點(diǎn)D,DE⊥PO交PO延長(zhǎng)線于點(diǎn)E,連接PB,∠EDB=∠EPB.
(1)求證:PB是的切線.
(2)若PB=6,DB=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)P在射線BC上(異于點(diǎn)B、C),直線AP與對(duì)角線BD及射線DC分別交于點(diǎn)F、Q.
(1)若BP=,求∠BAP的度數(shù);
(2)若點(diǎn)P在線段BC上,過(guò)點(diǎn)F作FG⊥CD,垂足為G,當(dāng)△FGC≌△QCP時(shí),求PC的長(zhǎng);
(3)以PQ為直徑作⊙M.
①判斷FC和⊙M的位置關(guān)系,并說(shuō)明理由;
②當(dāng)直線BD與⊙M相切時(shí),直接寫出PC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com