寫出下列命題的逆命題,并判斷逆命題的真假.
(1)如果∠α與∠β是鄰補角,那么∠α+β=180°
 

(2)如果一個三角形的兩個內(nèi)角相等,那么這兩個內(nèi)角所對的邊相等
 
考點:命題與定理
專題:
分析:(1)交換原命題中如果和那么后面的部分即可得到原命題的逆命題,然后根據(jù)鄰補角的定義判斷命題的真假;
(2)交換原命題中如果和那么后面的部分即可得到原命題的逆命題,然后根據(jù)等腰三角形的性質(zhì)判斷命題的真假.
解答:解:(1)逆命題為:如果∠α+β=180°,那么∠α與∠β是鄰補角,此逆命題為假命題;
(2)逆命題為:如果一個三角形的兩個內(nèi)角所對的邊相等,那么這兩個內(nèi)角相等,此逆命題為真命題.
故答案為如果∠α+β=180°,那么∠α與∠β是鄰補角;如果一個三角形的兩個內(nèi)角所對的邊相等,那么這兩個內(nèi)角相等,
點評:本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設(shè)和結(jié)論兩部分組成,題設(shè)是已知事項,結(jié)論是由已知事項推出的事項,一個命題可以寫成“如果…那么…”形式.有些命題的正確性是用推理證實的,這樣的真命題叫做定理.也考查了逆命題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

計算:
1
(-0.1)3
-
1
-0.22
+|(-2)3-3|-|-32-4|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在正方形ABCD內(nèi)作等邊△AED,連接BE,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用一副三角板能拼出的小于平角的最大角是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(1,3)和(2,0),點C是y軸上的一個動點,且A、B、C三點不在同一條直線上,當(dāng)△ABC的周長最小時,點C的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AB=AC,CD交AB于點E,∠BDC=∠BAC=α,連接AD.
(1)如圖1,當(dāng)α=60°,CD⊥AB時,求證:AD=BD=
1
2
CD;
(2)如圖2,當(dāng)α=60°,CD與AB不垂直時,請猜想線段AD、BD、CD之間的數(shù)量關(guān)系是
 
;(直接寫出結(jié)果)
(3)如圖3,當(dāng)α≠60°,CD與AB不垂直時,請猜想線段AD、BD、CD之間的數(shù)量關(guān)系并證明你的猜想(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,點C分線段AB為5:7兩個部分(AC<BC),點D分AC為5:7的兩個部分(AD<DC),且CD=5cm,則AB的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

a是不為1的有理數(shù),我們把
1
1-a
稱為a的差倒數(shù),如:2的差倒數(shù)是
1
1-2
=-1
,-1的差倒數(shù)是
1
1-(-1)
=
1
2
,已知a1=
1
3
,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類推,則a2015=( 。
A、
1
3
B、-2
C、
3
2
D、-
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠BAC=45°,AH⊥BC于H(H在邊BC上),若BH=1,CH=2,則AH=
 

查看答案和解析>>

同步練習(xí)冊答案