【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在CD邊上,點(diǎn)F在DC延長線上,AE=BF.
(1)求證:四邊形ABFE是平行四邊形;
(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長.
【答案】(1)證明見解析(2)EF=AB=5.
【解析】(1)證明:∵四邊形ABCD是矩形,∴AD=BC,∠D=∠BCD=90°.
∴∠BCF=180°﹣∠BCD=180°﹣90°=90°.
∴∠D=∠BCF.在Rt△ADE和Rt△BCF中,∴Rt△ADE≌Rt△BCF.
∴∠1=∠F.∴AE∥BF.∵AE=BF,∴四邊形ABFE是平行四邊形.
(2)解:∵∠D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠DAE,∴∠BEF+∠1=90°.
∵∠BEF+∠1+∠AEB=180°,∴∠AEB=90°.
在Rt△ABE中,AE=3,BE=4,AB=.
∵四邊形ABFE是平行四邊形,∴EF=AB=5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.
(1)若拋物線經(jīng)過點(diǎn)C、A、A′,求此拋物線的解析式;
(2)點(diǎn)M時(shí)第一象限內(nèi)拋物線上的一動點(diǎn),問:當(dāng)點(diǎn)M在何處時(shí),△AMA′的面積最大?最大面積是多少?并求出此時(shí)M的坐標(biāo);
(3)若P為拋物線上一動點(diǎn),N為x軸上的一動點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成平行四邊形時(shí),求點(diǎn)P的坐標(biāo),當(dāng)這個(gè)平行四邊形為矩形時(shí),求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)三角形有兩邊長分別為2,3,第三邊長為偶數(shù),則這個(gè)三角形的周長為( )
A. 7 B. 9 C. 7或9 D. 7或8或9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB=12cm,點(diǎn)C為AB上的一個(gè)動點(diǎn),點(diǎn)D、E分別是AC和BC的中點(diǎn).
(1)若AC=4cm,求DE的長;
(2)試?yán)?/span>“字母代替數(shù)”的方法,說明不論AC取何值(不超過12cm),DE的長不變;
(3)知識遷移:如圖②,已知∠AOB=α,過點(diǎn)O畫射線OC,使∠AOB:∠BOC=3:1若OD、OE分別平分∠AOC和∠BOC,試探究∠DOE與∠AOB的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過點(diǎn)C,且對稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動點(diǎn),設(shè)運(yùn)動時(shí)間為t秒.
(1)填空:點(diǎn)A坐標(biāo)為 ;拋物線的解析式為 .
(2)在圖1中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動,同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動.當(dāng)t為何值時(shí),△PCQ為直角三角形?
(3)在圖2中,若點(diǎn)P在對稱軸上從點(diǎn)A開始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動,過點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(﹣5,3)在平面直角坐標(biāo)系中所在的位置是( 。
A.第一象限B.第二象限C.第三象限D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A1的坐標(biāo)為(1,0),A2在y軸的正半軸上,且∠A1A2O=30°,過點(diǎn)A2作A2A3⊥A1A2,垂足為A2,交x軸于點(diǎn)A3;過點(diǎn)A3作A3A4⊥A2A3,垂足為A3,交y軸于點(diǎn)A4;過點(diǎn)A4作A4A5⊥A3A4,垂足為A4,交x軸于點(diǎn)A5;過點(diǎn)A5作A5A6⊥A4A5,垂足為A5,交y軸于點(diǎn)A6;…按此規(guī)律進(jìn)行下去,則點(diǎn)A2016的縱坐標(biāo)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com