【題目】如圖,拋物線x軸交于A、B兩點,與y軸交于點C,且OA2,OC3

1)求拋物線的解析式;

2)作RtOBC的高OD,延長OD與拋物線在第一象限內(nèi)交于點E,求點E的坐標(biāo);

3)①在x軸上方的拋物線上,是否存在一點P,使四邊形OBEP是平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由;

②在拋物線的對稱軸上,是否存在上點Q,使得BEQ的周長最小?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

【答案】1y=﹣x2+x+3;(2)(2,2);(3)①存在,(﹣1,2);②存在,(,

【解析】

1)先根據(jù)已知條件得出A點及C點坐標(biāo),利用待定系數(shù)法即可求出此拋物線的解析式;

2y0代入(1)中所求二次函數(shù)的解析式即可的出此函數(shù)與x軸的交點坐標(biāo),由OD平分∠BOC可知OE所在的直線為yx,再解此直線與拋物線組成的方程組即可求出E點坐標(biāo);

3)①過點Ex軸的平行線與拋物線交于另一點P,連接BE、PO,把y2代入二次函數(shù)解析式即可求出P點坐標(biāo),進(jìn)而可得出四邊形OBEP是平行四邊形;

②設(shè)Q是拋物線對稱軸上的一點,連接QA、QB、QEBE,由QAQB可知BEQ的周長等于BE+QA+QE,由A、E兩點的坐標(biāo)可得出直線AE的解析式,再根據(jù)拋物線的對稱軸是x可求出Q點的坐標(biāo),進(jìn)而可得出結(jié)論.

解:(1)∵OA2,

∴點A的坐標(biāo)為(﹣20).

OC3,

∴點C的坐標(biāo)為(03).

∵把(﹣2,0),(03)代入y=﹣x2+bx+c,得解得

∴拋物線解析式為y=﹣x2+x+3;

2)把y0代入y=﹣x2+x+3,

解得x1=﹣2,x23

∴點B的坐標(biāo)為(3,0),

OBOC3

ODBC,

OD平分∠BOC

OE所在的直線為yx

解方程組,,

∵點E在第一象限內(nèi),

∴點E的坐標(biāo)為(2,2).

3)①存在,如圖1,過點Ex軸的平行線與拋物線交于另一點P,連接BE、PO

y2代入y=﹣x2+x+3,

解得x1=﹣1,x22

∴點P的坐標(biāo)為(﹣1,2),

PEOB,且PEOB3,

∴四邊形OBEP是平行四邊形,

∴在x軸上方的拋物線上,存在一點P(﹣12),使得四邊形OBEP是平行四邊形;

②存在,如圖2,設(shè)Q是拋物線對稱軸上的一點,連接QA、QB、QE、BE

QAQB,

∴△BEQ的周長等于BE+QA+QE,

又∵BE的長是定值

AQ、E在同一直線上時,BEQ的周長最小,

A(﹣2,0)、E22)可得直線AE的解析式為yx+1,

∵拋物線的對稱軸是x

∴點Q的坐標(biāo)為(,

∴在拋物線的對稱軸上,存在點Q,),使得BEQ的周長最。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017遼寧省葫蘆島市)如圖,∠MAN=60°,AP平分∠MAN,點B是射線AP上一定點,點C在直線AN上運動,連接BC,將∠ABC(0°<ABC<120°)的兩邊射線BCBA分別繞點B順時針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線AM交于點D和點E

(1)如圖1,當(dāng)點C在射線AN上時,①請判斷線段BCBD的數(shù)量關(guān)系,直接寫出結(jié)論;

②請?zhí)骄烤段AC,ADBE之間的數(shù)量關(guān)系,寫出結(jié)論并證明;

(2)如圖2,當(dāng)點C在射線AN的反向延長線上時,BC交射線AM于點F,若AB=4,AC=,請直接寫出線段ADDF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,O1過原點O,且O1O2相外切,圓心O1與O2在x軸正半軸上,O1的半徑O1P1O2的半徑O2P2都與x軸垂直,且點P1、P2在反比例函數(shù)(x>0)的圖象上,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半徑為3半圓O的直徑.CD是圓中可移動的弦,且CD=3,連接 AD、BC相交于點P,弦CDCA重合的位置開始,繞著點O順時針旋轉(zhuǎn)120°,則交點P運動的路徑長是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“春節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“湯圓”的習(xí)俗.某食品廠為了解市民對去年銷量較好的肉餡(A)、豆沙餡 (B)、菜餡(C)、三丁餡 (D)四種不同口味湯圓的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).請根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民人數(shù)是   人;

(2)將圖 ①②補充完整;( 直接補填在圖中)

(3)求圖中表示“A”的圓心角的度數(shù);

(4)若居民區(qū)有8000人,請估計愛吃D湯圓的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍(lán)球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為

(1)求口袋中黃球的個數(shù);

(2)甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,

求兩次摸 出都是紅球的概率;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA,OB是⊙O的兩條半徑,OAOB,C是半徑OB上的一動點,連接AC并延長交⊙OD,過點D作直線交OB延長線于E,且DE=CE,已知OA=8.

(1)求證:ED是⊙O的切線;

(2)當(dāng)∠A=30°時,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,BD=BC,

1)如圖,若菱形ABCD的面積為6.求點BDC的最短距離.

2)如圖2,點FBC邊上,且DECF,連接DFBE于點M,連接EB并延長至點N,使得BNDM,求證:ANDM+BM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABD中,∠A90°,將斜邊BD繞點B順時針方向旋轉(zhuǎn)至BC,使BCAD,過點CCEBD于點E

(1)求證:ABD≌△ECB;

(2)若∠ABD30°BE=3,求弧CD的長.

查看答案和解析>>

同步練習(xí)冊答案