【題目】如圖,AB為⊙O的直徑,AB的長(zhǎng)是4,C為⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線互相垂直,垂足為D.
(1)求證:AC平分∠DAB;
(2)若cos∠DAC=,求弧BC的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)
【解析】分析:(1)連接OC,根據(jù)切線性質(zhì)求出OC⊥CD,根據(jù)平行線的判定得出AD∥OC,即可求出答案;
(2)求出∠CAB的度數(shù),根據(jù)弧長(zhǎng)公式求出即可.
詳解:(1)證明:連接OC,
∵DC是⊙O的切線,
∴OC⊥DC,
∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠OCA,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠DAC=∠OAC,
即AC平分∠DAB;
(2)∵∠DAC=∠OAC,cos∠DAC=,
∴∠CAB=30°,
∴∠BOC=60°
∵AB=4,
∴OA=2,
∴弧BC的長(zhǎng)為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(4,0)及在第一象限的動(dòng)點(diǎn)P(x,y),且x+y=5,0為坐標(biāo)原點(diǎn),設(shè)△OPA的面積為S.
(1)求S關(guān)于x的函數(shù)表達(dá)式;
(2)求x的取值范圍;
(3)當(dāng)S=4時(shí),求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD、等腰Rt△BPQ的頂點(diǎn)P在對(duì)角線AC上(點(diǎn)P與A、C不重合),QP與BC交于E,QP延長(zhǎng)線與AD交于點(diǎn)F,連接CQ.
(1)①求證:AP=CQ;②求證:PA2=AFAD;
(2)若AP:PC=1:3,求tan∠CBQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上有點(diǎn)A(1,0),點(diǎn)A第一次跳動(dòng)至點(diǎn),第二次點(diǎn)跳動(dòng)至點(diǎn)第三次點(diǎn)跳動(dòng)至點(diǎn),第四次點(diǎn)跳動(dòng)至點(diǎn)……,依此規(guī)律跳動(dòng)下去,則點(diǎn)與點(diǎn)之間的距離是( )
A. 2017B. 2018C. 2019D. 2020
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中有 A(-2,1), B(3, 1),C(2, 3)三點(diǎn),請(qǐng)回答下列問(wèn)題:
(1)在坐標(biāo)系內(nèi)描出點(diǎn)A, B, C的位置.
(2)畫(huà)出關(guān)于直線x=-1對(duì)稱的,并寫(xiě)出各點(diǎn)坐標(biāo).
(3)在y軸上是否存在點(diǎn)P,使以A,B, P三點(diǎn)為頂點(diǎn)的三角形的面積為10?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題:(1)_______;(2)________;
(3)_______;(4)_______;
(5)________;(6)________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(幾何背景)如圖1,AD為銳角△ABC的高,垂足為D.求證:AB2﹣AC2=BD2﹣CD2
(知識(shí)遷移)如圖2,矩形ABCD內(nèi)任意一點(diǎn)P,連接PA、PB、PC、PD,請(qǐng)寫(xiě)出PA、PB、PC、PD之間的數(shù)量關(guān)系,并說(shuō)明理由.
(拓展應(yīng)用)如圖3,矩形ABCD內(nèi)一點(diǎn)P,PC⊥PD,若PA=a,PB=b,AB=c,且a、b、c滿足a2﹣b2=c2,則的值為 (請(qǐng)直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)興趣小組在活動(dòng)時(shí),老師提出了這樣一個(gè)問(wèn)題:如圖1,在△ABC中,AB=8,AC=6,D是BC的中點(diǎn),求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:延長(zhǎng)AD到E,使DE=AD,再證明“△ADC≌△EDB”.
(1)探究得出AD的取值范圍是_____;
(2)(問(wèn)題解決)如圖2,△ABC中,∠B=90°,AB=2,AD是△ABC的中線,CE⊥BC,CE=4,且∠ADE=90°,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠準(zhǔn)備用圖甲所示的型正方形板材和型長(zhǎng)方形板材,制作成圖乙所示的豎式和橫式兩種無(wú)蓋箱子.
(1)若該工廠準(zhǔn)備用不超過(guò)2400元的資金去購(gòu)買,兩種型號(hào)板材,制作豎式、橫式箱子共10個(gè),已知型板材每張20元,型板材每張60元,問(wèn)最多可以制作豎式箱子多少只?
(2)若該工程新購(gòu)得65張規(guī)格為型正方形板材,將其全部切割測(cè)好難過(guò)型或型板材(不計(jì)損耗),用切割的板材制作兩種類型的箱子,要求豎式箱子不少于10只,且材料恰好用完,則能制作豎式箱子______只.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com