【題目】如圖,Rt△ABC 有一外接圓,其中∠B=90°,AB>BC,今欲在上找一點 P, 使得,下是甲、乙兩人的作法:

甲:①取 AB 的中點 D:②過點 D 作直線 AC 的平行線,交于點 P,則點 P 即為所求,

乙:①取 AC 的中點 E;②過點 E 作直線AB 的平行線,交于點 P,則點 P 即為所求,

對于甲、乙兩人的作法,下列判斷正確的是(

A. 兩人皆正確 B. 兩人皆錯誤 C. 甲正確,乙錯誤 D. 甲錯誤,乙正確

【答案】B

【解析】

(1)由甲的作法可知,DP是△ABC的中位線,由于DP不垂直于BC,故;

(2)由乙的作法,連BE,可知△BEC為等腰三角形,由等腰三角形的性質可知∠1=∠2,根據圓周角定理即可得出結論.

(1)由甲的作法可知,DP是△ABC的中位線,

∵DP不垂直于BC,∴;

(2)由乙的作法,連BE,可知△BEC為等腰三角形

∵直線PE⊥BC,∴∠1=∠2

;∴甲錯誤,乙正確.故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的中線,DE是△ADC的高,DF是△ABD的中線,且CE1,DE2AE4

1)∠ADC是直角嗎?請說明理由.

2)求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為落實綠水青山就是金山銀山的發(fā)展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務該工程隊有兩種型號的挖掘機,已知3型和5型挖掘機同時施工一小時挖土165立方米;4型和7型挖掘機同時施工一小時挖土225立方米每臺型挖掘機一小時的施工費用為300,每臺型挖掘機一小時的施工費用為180

(1)分別求每臺, 型挖掘機一小時挖土多少立方米?

(2)若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960問施工時有哪幾種調配方案,并指出哪種調配方案的施工費用最低,最低費用是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQMN平行,河岸MN上有A、B兩個相距50米的涼亭,小亮在河對岸D處測得∠ADP=60°,然后沿河岸走了110米到達C處,測得∠BCP=30°,求這條河的寬.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形網格中,ABC為格點三角形(即三角形的頂點都在格點上)

(1)把ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的A1B1C1;

(2)把A1B1C1繞點A1按逆時針方向旋轉90°,在網格中畫出旋轉后的A1B2C2

(3)如果網格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸相交于點A(﹣3,0),B(1,0),與y軸相交于(0,﹣),頂點為P.

(1)求拋物線解析式;

(2)在拋物線是否存在點E,使△ABP的面積等于△ABE的面積?若存在,求出符合條件的點E的坐標;若不存在,請說明理由;

(3)坐標平面內是否存在點F,使得以A、B、P、F為頂點的四邊形為平行四邊形?直接寫出所有符合條件的點F的坐標,并求出平行四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某批發(fā)商以每件50元的價格購進400T恤.若以單價70元銷售,預計可售出200件.批發(fā)商的銷售策略是:第一個月為增加銷售量,降價銷售,經過市場調查,單價每降低0.5,可多售出5,但最低單價不低于購進的價格;第一個月結束后,將剩余的T恤一次性清倉銷售,清倉時單價為40元.設第一個月單價降低x元.

(1)根據題意,完成下表:

每件T恤的利潤(元)

銷售量(件)

第一個月

清倉時

(2)T恤的銷售單價定為多少元時,該批發(fā)商可獲得最大利潤?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,∠ABD、CDB的平分線BE、DF分別交邊AD、BC于點E、F.

(1)求證:四邊形BEDF是平行四邊形;

(2)當∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在 中, ,AC=BC, , ,垂足分別為D,E

1)若AD=25cmDE=17cm,求BE的長.

2)如圖2,在原題其他條件不變的前提下,將CE所在直線旋轉到 ABC的外部,請你猜想AD,DEBE三者之間的數(shù)量關系,直接寫出結論:________.(不需證明)

3)如圖3,若將原題中的條件改為: ABC中,AC=BC,D,C,E三點在同一條直線上,并且有 ,其中 為任意鈍角,那么(2)中你的猜想是否還成立?若成立,請予以證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案