【題目】正方形網(wǎng)格中,小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)的三角形叫做格點(diǎn)三角形.下圖中的正方形網(wǎng)格中是格點(diǎn)三角形,小正方形網(wǎng)格的邊長(zhǎng)為(單位長(zhǎng)度).

的面積是________(平方單位);

在圖所示的正方形網(wǎng)格中作出格點(diǎn),使,,且、、中任意兩條線段的長(zhǎng)度都不相等;

在所有與相似的格點(diǎn)三角形中,是否存在面積為(平方單位)的格點(diǎn)三角形?如果存在,請(qǐng)?jiān)趫D中作出,如果不存在,請(qǐng)說(shuō)明理由.

【答案】(1)5;(2)詳見(jiàn)解析;(3)不存在.

【解析】

(1)ABC的面積可以用正方形的面積減去其周圍三個(gè)直角三角形的面積.
(2)利用格點(diǎn)正方形將三角形ABC的三邊分別求出來(lái),利用相似三角形對(duì)應(yīng)邊成比例得到相應(yīng)的三角形的三邊長(zhǎng),在格點(diǎn)正方形中畫出來(lái)即可;
(3)假設(shè)存在這樣的三角形,從存在出發(fā),經(jīng)過(guò)推理得到矛盾后即可說(shuō)明不存在這樣的三角形.

如圖

我們可以知道,,為長(zhǎng)的兩倍.且是垂直的.

若存在該三角形,命名為相似.

因?yàn)?/span>長(zhǎng)為長(zhǎng)的兩倍所以長(zhǎng)為長(zhǎng)的兩倍.

,

是不可能由格點(diǎn)三角形構(gòu)成,所以不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形AOBC中,ACOB,頂點(diǎn)O是原點(diǎn),頂點(diǎn)A的坐標(biāo)為(0,8),AC24cm,OB26cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),以3m/s的速度向點(diǎn)O運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng);從運(yùn)動(dòng)開(kāi)始,設(shè)PQ)點(diǎn)運(yùn)動(dòng)的時(shí)間為ts

1)求直線BC的函數(shù)解析式;

2)當(dāng)t為何值時(shí),四邊形AOQP是矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)(﹣2,y1),(﹣5,y2),(1,y3)在函數(shù)y=2x2+8x+7的圖象上,則y1,y2,y3的大小關(guān)系為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ADBEABC的角平分線,DE分別在BC,AC上,若AD=AB,BE=BC,則∠C=( 。

A. 69° B. C. D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CA=CB,CD為斜邊AB上的中線.

(1)如圖1,AE平分∠CABBCE,交CDF,若DF=2,求AC的長(zhǎng);

(2)將圖1中的△ADC繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定角度得到△ADN,如圖2,P,Q分別為線段AN,BC的中點(diǎn),連接AC,BN,PQ,求證:BN=PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形的頂點(diǎn)在坐標(biāo)原點(diǎn),,分別在軸,軸的正半軸上,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,當(dāng)此矩形繞點(diǎn)旋轉(zhuǎn)到如圖位置時(shí)的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象上分別與x軸,y軸交于AB兩點(diǎn),正比例函數(shù)的圖象交于點(diǎn)

1)求m的值;

2)求直線的解析式;

3-次函數(shù)的圖象為直線,且,可以圍成三角形,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣2,2),B(﹣3,﹣2).

1)若點(diǎn)D與點(diǎn)A關(guān)于y軸對(duì)稱,則點(diǎn)D的坐標(biāo)為   

2)將點(diǎn)B先向右平移5個(gè)單位再向上平移1個(gè)單位得到點(diǎn)C,則點(diǎn)C的坐標(biāo)為   

3)在圖上作出點(diǎn)C,D,并順次連接成四邊形ABCD;

4)四邊形ABCD的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論:①9a﹣3b+c=0;②4a﹣2b+c>0;③方程ax2+bx+c﹣4=0有兩個(gè)相等的實(shí)數(shù)根;④方程a(x﹣1)2+b(x﹣1)+c=0的兩根是x1=﹣2,x2=2.其中正確結(jié)論的個(gè)數(shù)是_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案