【題目】如圖,已知矩形ABCDABAD).

1)請(qǐng)用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;

①以點(diǎn)A為圓心,以AD的長(zhǎng)為半徑畫(huà)弧交邊BC于點(diǎn)E,連接AE;

②作∠DAE的平分線交CD于點(diǎn)F;

③連接EF

2)在(1)作出的圖形中,若AB=8AD=10,則tanFEC的值為   

【答案】(1)作圖見(jiàn)解析;(2)

【解析】試題分析:(1)根據(jù)題目要求作圖即可;

2)由(1)知AE=AD=10、∠DAF=∠EAF,可證△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,從而由tanFEC=tanBAE=可得答案.

試題解析:(1)如圖所示;

2)由(1)知AE=AD=10、∠DAF=∠EAF,

AB=8

BE==6,

在△DAF和△EAF中,

AD=AF,∠DAF=∠EAF,AF=AF

∴△DAF≌△EAFSAS),

∴∠D=∠AEF=90°,

∴∠BEA+∠FEC=90°,

又∵∠BEA+∠BAE=90°,

∴∠FEC=∠BAE,

tanFEC=tanBAE===

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了維護(hù)國(guó)家主權(quán)和海洋權(quán)力,海監(jiān)部門(mén)對(duì)我國(guó)領(lǐng)海實(shí)現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時(shí)50海里的速度向正東方航行,在處測(cè)得燈塔在北偏東方向上,繼續(xù)航行1小時(shí)到達(dá)處,此時(shí)測(cè)得燈塔在北偏東方向上.

(1)求的度數(shù);

(2)已知在燈塔的周圍25海里內(nèi)有暗礁,問(wèn)海監(jiān)船繼續(xù)向正東方向航行是否安全?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,已知A、B兩個(gè)邊長(zhǎng)不相等的正方形紙片并排放置,若m7,n3,試求A、B兩個(gè)正方形紙片的面積之和.

2)如圖1,用m、n表示AB兩個(gè)正方形紙片的面積之和為 .(請(qǐng)直接寫(xiě)出答案)

3)如圖2,若AB兩個(gè)正方形紙片的面積之和為5,且圖2中陰影部分的面積為2,試求mn的值.

4)現(xiàn)將正方形紙片A、B并排放置后構(gòu)造新的正方形得圖3,將正方形紙片B放在正方形紙片A的內(nèi)部得圖4,若圖3和圖4中陰影部分的面積分別為121,則AB兩個(gè)正方形紙片的面積之和為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為美化校園,計(jì)劃對(duì)面積為2000m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成,已知甲隊(duì)每天完成綠化的面積是乙隊(duì)每天完成綠化的面積的2倍,并且在獨(dú)立完成面積為600m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用6天.

1)甲、乙兩個(gè)工程隊(duì)每天能完成綠化的面積分別是多少?

2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用為0.5萬(wàn)元,乙隊(duì)為0.3萬(wàn)元,要使這次的綠化總費(fèi)用不超過(guò)10萬(wàn)元,至少應(yīng)安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)A表示的數(shù)a、點(diǎn)B表示數(shù)b,a、b滿足|a40|+b+820.點(diǎn)O是數(shù)軸原點(diǎn).

1)點(diǎn)A表示的數(shù)為 ,點(diǎn)B表示的數(shù)為 ,線段AB的長(zhǎng)為

2)若點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,請(qǐng)?jiān)跀?shù)軸上找一點(diǎn)C,使AC2BC,則點(diǎn)C在數(shù)軸上表示的數(shù)為

3)現(xiàn)有動(dòng)點(diǎn)P、Q都從B點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)A移動(dòng);當(dāng)點(diǎn)P移動(dòng)到O點(diǎn)時(shí),點(diǎn)Q才從B點(diǎn)出發(fā),并以每秒3個(gè)單位長(zhǎng)度的速度向右移動(dòng),且當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q就停止移動(dòng),設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,問(wèn):當(dāng)t為多少時(shí),P、Q兩點(diǎn)相距4個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E,F分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BPEF于點(diǎn)Q,對(duì)于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是( )

A. ①② B. ②③ C. ①③ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)D是邊BC的中點(diǎn),點(diǎn)E在ABC內(nèi),AE平分BAC,CEAE,點(diǎn)F在邊AB上,EFBC

(1)求證:四邊形BDEF是平行四邊形;

(2)線段BF、AB、AC的數(shù)量之間具有怎樣的關(guān)系?證明你所得到的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于O,且AB為O的直徑.ACB的平分線交O于點(diǎn)D,過(guò)點(diǎn)D作O的切線PD交CA的延長(zhǎng)線于點(diǎn)P,過(guò)點(diǎn)A作AECD于點(diǎn)E,過(guò)點(diǎn)B作BFCD于點(diǎn)F.

(1)求證:DPAB;

(2)若AC=6,BC=8,求線段PD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是矩形ABCD的邊BC的中點(diǎn),連接DEAC于點(diǎn)F

如圖,求證:;

如圖,作G,試探究:當(dāng)ABAD滿足什么關(guān)系時(shí),使得成立?并證明你的結(jié)論;

如圖,以DE為斜邊在矩形ABCD內(nèi)部作等腰,交對(duì)角線BDN,連接AM,若,請(qǐng)直接寫(xiě)出的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案