【題目】如圖,長(zhǎng)方形中,長(zhǎng),寬,四邊形和四邊形都是正方形.
(1)求四邊形的面積(用含、的代數(shù)式表示);
(2)當(dāng)、滿(mǎn)足什么等量關(guān)系時(shí),圖形是一個(gè)軸對(duì)稱(chēng)圖形.
【答案】(1);(2)
【解析】
(1)由已知條件可得四邊形是長(zhǎng)方形和線(xiàn)段HD的長(zhǎng)度,又因四邊形是正方形,可知GC的長(zhǎng)度,從而可計(jì)算出DG的長(zhǎng)度,四邊形的面積即可求得;
(2)要使圖形是一個(gè)軸對(duì)稱(chēng)圖形,由題意可知,應(yīng)使圖形沿一條水平直線(xiàn)對(duì)折,使上下兩部分能夠完全重合,因此FG需是四邊形的一條中位線(xiàn),由此列出等式即可得a、b關(guān)系.
(1)由題意可知,四邊形為長(zhǎng)方形,AB=AH,HD=EC=GC,
,
,
四邊形的面積.
(2)由題意可知,要使圖形是一個(gè)軸對(duì)稱(chēng)圖形,FG應(yīng)該是四邊形的一條中位線(xiàn),
,
又題(1)已算得,
,即,
答:當(dāng)時(shí),圖形是一個(gè)軸對(duì)稱(chēng)圖形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,是對(duì)角線(xiàn)上不同的兩點(diǎn),下列條件中,不能得出四邊形一定為平行四邊形的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F是對(duì)角線(xiàn)BD上的兩點(diǎn),如果添加一個(gè)條件使△ABE≌△CDF,則添加的條件不能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店在兩周內(nèi),將標(biāo)價(jià)為10元/斤的某種水果,經(jīng)過(guò)兩次降價(jià)后的價(jià)格為8.1元/斤,并且兩次降價(jià)的百分率相同.
(1)求該種水果每次降價(jià)的百分率;
(2)從第一次降價(jià)的第1天算起,第x天(x為整數(shù))的售價(jià)、銷(xiāo)量及儲(chǔ)存和損耗費(fèi)用的相關(guān)信息如表所示.已知該種水果的進(jìn)價(jià)為4.1元/斤,設(shè)銷(xiāo)售該水果第x(天)的利潤(rùn)為y(元),求y與x(1≤x<15)之間的函數(shù)關(guān)系式,并求出第幾天時(shí)銷(xiāo)售利潤(rùn)最大?
時(shí)間x(天) | 1≤x<9 | 9≤x<15 | x≥15 |
售價(jià)(元/斤) | 第1次降價(jià)后的價(jià)格 | 第2次降價(jià)后的價(jià)格 | |
銷(xiāo)量(斤) | 80﹣3x | 120﹣x | |
儲(chǔ)存和損耗費(fèi)用(元) | 40+3x | 3x2﹣64x+400 |
(3)在(2)的條件下,若要使第15天的利潤(rùn)比(2)中最大利潤(rùn)最多少127.5元,則第15天在第14天的價(jià)格基礎(chǔ)上最多可降多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等邊中,在邊上,繞頂點(diǎn)旋轉(zhuǎn)到位置,
(1)指出旋轉(zhuǎn)中心,旋轉(zhuǎn)方向,其中一個(gè)旋轉(zhuǎn)角及其大小.
(2)指出的大小以及聯(lián)結(jié)后的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將線(xiàn)段OB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段OC,繼續(xù)旋轉(zhuǎn)α(0°<α<120°)得到線(xiàn)段OD,連接CD.
(1)如圖,連接BD,則∠BDC的大小=_____(度);
(2)將線(xiàn)段OB放在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(﹣6,0),以OB為斜邊作Rt△OBE,使∠OBE=∠OCD,且點(diǎn)E在第三象限,若∠CED=90°,則α的大小=_____(度),點(diǎn)D的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:中,,求證:,下面寫(xiě)出可運(yùn)用反證法證明這個(gè)命題的四個(gè)步驟:
①∴,這與三角形內(nèi)角和為矛盾,②因此假設(shè)不成立.∴,③假設(shè)在中,,④由,得,即.這四個(gè)步驟正確的順序應(yīng)是( 。
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣+bx+c過(guò)點(diǎn)A(3,0),B(0,2).M(m,0)為線(xiàn)段OA上一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A不重合),過(guò)點(diǎn)M作垂直于x軸的直線(xiàn)與直線(xiàn)AB和拋物線(xiàn)分別交于點(diǎn)P、N.
(1)求直線(xiàn)AB的解析式和拋物線(xiàn)的解析式;
(2)如果點(diǎn)P是MN的中點(diǎn),那么求此時(shí)點(diǎn)N的坐標(biāo);
(3)在對(duì)稱(chēng)軸的左側(cè)是否存在點(diǎn)M使四邊形OMPB的面積最大,如果存在求點(diǎn)M的坐標(biāo);不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+b與雙曲線(xiàn)y=(k是常數(shù),k≠0)在第一象限內(nèi)交于點(diǎn)A(1,2),且與x軸、y軸分別交于B,C兩點(diǎn).點(diǎn)P在x軸.
(1)求直線(xiàn)和雙曲線(xiàn)的解析式;
(2)若△BCP的面積等于2,求P點(diǎn)的坐標(biāo);
(3)求PA+PC的最短距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com