【題目】如圖,點A是反比例函數(shù)y=圖象上的任意一點,過點A作AB∥x軸,AC∥y軸,分別交反比例函數(shù)y=的圖象于點B,C,連接BC,E是BC上一點,連接并延長AE交y軸于點D,連接CD,則S△DEC﹣S△BEA=_________.
科目:初中數(shù)學 來源: 題型:
【題目】定義:若線段AB上有一點P,當PA=PB時,則稱點P為線段AB的中點。
已知數(shù)軸上A,B兩點對應數(shù)分別為a和b,,P為數(shù)軸上一動點,對應數(shù)為x.
(1)a=______,b=_______;
(2)若點P為線段AB的中點,則P點對應的數(shù)為______________.若B為線段AP的中點時則P點對應的數(shù)為______________。
(3)若點A、點B同時向左運動,它們的速度都為1個單位長度/秒,與此同時點P從-16處以2個單位長度/秒向右運動。
①設運動的時間為t秒,直接用含t的式子填空
AP=____________;BP=______________。
②經(jīng)過多長時間后,點A、點B、點P三點中其中一點是另外兩點的中點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸分別交于A(1,0),B(5,0)兩點.
(1)求拋物線的解析式;
(2)過點C(﹣3,0)在x軸下方作x軸的垂線,再以點A為圓心、5為半徑長畫弧,交先前所作垂線于D,連接AD(如圖),將Rt△ACD沿x軸向右平移m個單位,當點D落在拋物線上時,求m的值;
(3)在(2)的條件下,當點D第一次落在拋物線上記為點E,點P是拋物線對稱軸上一點.試探究:在拋物線上是否存在點Q,使以點B、E、P、Q為頂點的四邊形是平行四邊形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)(-3)-(-2)+(-4)
(2)(-)-(-)-|-|-(-)
(3)-23÷×(-)2
(4)()×(-36)
(5)-14-×
(6)(-1)4+5÷(-)×(-6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB//CD,點C在點D的右側(cè),∠ABC,∠ADC的平分線交于點E(不與B,D點重合).,.
(1)若點B在點A的左側(cè),求∠BED的度數(shù)(用含的代數(shù)式表示).
(2)將線段BC沿DC方向平移,當點B移動到點A右側(cè)時,請畫出圖形并判斷的度數(shù)是否改變.若改變,請求出的度數(shù)(用含的代數(shù)式表示);若不變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點P為∠EAF平分線上一點,PB⊥AE于B,PC⊥AF于C,點M,N分別是射線AE,AF上的點,且PM=PN.
(1)如圖1,當點M在線段AB上,點N在線段AC的延長線上時,求證:BM=CN;
(2)在(1)的條件下,直接寫出線段AM,AN與AC之間的數(shù)量關系 ;
(3)如圖2,當點M在線段AB的延長線上,點N在線段AC上時,若AC:PC=2:1,且PC=4,求四邊形ANPM的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著社會的發(fā)展,通過微信朋友圈發(fā)布自己每天行走的步數(shù)已經(jīng)成為一種時尚.“健身達人”小陳為了了解他的好友的運動情況.隨機抽取了部分好友進行調(diào)查,把他們6月1日那天行走的情況分為四個類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統(tǒng)計結(jié)果如圖所示:
請依據(jù)統(tǒng)計結(jié)果回答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 位好友.
(2)已知A類好友人數(shù)是D類好友人數(shù)的5倍.
①請補全條形圖;
②扇形圖中,“A”對應扇形的圓心角為 度.
③若小陳微信朋友圈共有好友150人,請根據(jù)調(diào)查數(shù)據(jù)估計大約有多少位好友6月1日這天行走的步數(shù)超過10000步?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,已知直線AB的函數(shù)解析式為y=﹣2x+8,與x軸交于點A,與y軸交于點B.
(1)求A、B兩點的坐標;
(2)若點P(m,n)為線段AB上的一個動點(與A、B不重合),作PE⊥x軸于點E,PF⊥y軸于點F,連接EF,問:
①若△PAO的面積為S,求S關于m的函數(shù)關系式,并寫出m的取值范圍;
②是否存在點P,使EF的值最?若存在,求出EF的最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com