不等式14-2x>6的解集為
 
考點(diǎn):解一元一次不等式
專題:
分析:利用不等式的性質(zhì)進(jìn)行解答.
解答:解:由原不等式移項(xiàng),得
-2x>-8,
化系數(shù)為1,得
x<4.
故答案是:x<4.
點(diǎn)評(píng):本題考查了解一元一次不等式.解不等式要依據(jù)不等式的基本性質(zhì),在不等式的兩邊同時(shí)加上或減去同一個(gè)數(shù)或整式不等號(hào)的方向不變;在不等式的兩邊同時(shí)乘以或除以同一個(gè)正數(shù)不等號(hào)的方向不變;在不等式的兩邊同時(shí)乘以或除以同一個(gè)負(fù)數(shù)不等號(hào)的方向改變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖(1),在平面直角坐標(biāo)系中,點(diǎn)A(0,-6),點(diǎn)B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4
3
,直角邊CD在y軸上,且點(diǎn)C與點(diǎn)A重合.Rt△CDE沿y軸正方向平行移動(dòng),當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)O時(shí)停止運(yùn)動(dòng).解答下列問(wèn)題:
(1)如圖(2),當(dāng)Rt△CDE運(yùn)動(dòng)到點(diǎn)D與點(diǎn)O重合時(shí),設(shè)CE交AB于點(diǎn)M,求∠BME的度數(shù).
(2)如圖(3),在Rt△CDE的運(yùn)動(dòng)過(guò)程中,當(dāng)CE經(jīng)過(guò)點(diǎn)B時(shí),求BC的長(zhǎng).
(3)在Rt△CDE的運(yùn)動(dòng)過(guò)程中,設(shè)AC=h,△OAB與△CDE的重疊部分的面積為S,請(qǐng)寫(xiě)出S與h之間的函數(shù)關(guān)系式,并求出面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

閱讀材料,解答問(wèn)題.
利用圖象法解一元二次不等式:x2+2x-3<0.
解:設(shè)y=x2+2x-3,則y是x的二次函數(shù).∵a=1>0,
∴拋物線開(kāi)口向上.
又∵當(dāng)y=0時(shí),x2+2x-3=0,解得x1=1,x2=-3.
∴由此得拋物線y=x2+2x-3的大致圖象如圖所示.
觀察函數(shù)圖象可知:當(dāng)-3<x<1時(shí),y<0.
∴x2+2x-3<0的解集是:-3<x<1時(shí).
(1)觀察圖象,直接寫(xiě)出一元二次不等式:x2+2x-3>0的解集
(2)仿照上例,用圖象法解一元二次不等式:-2x2-4x+6>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程3x+2a-3=0的解是x=3,則a的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x+3≥2
x-5>0
的解集是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有五張下面分別標(biāo)有數(shù)字-2,0,
1
2
,1,3的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為a,則使關(guān)于x的分工方程
1-ax
x-2
+2=
1
2-x
有整數(shù)解的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知最簡(jiǎn)二次根式
2a-4
2
是同類二次根式,則a的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

不等式2(x-3)≤2a+1的自然數(shù)解只有0、1、2三個(gè),則a的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果把分式
xy
y-x
中的x,y都擴(kuò)大為原來(lái)的2倍,則分式的值( 。
A、擴(kuò)大為原來(lái)的2倍
B、擴(kuò)大為原來(lái)的4倍
C、縮小為原來(lái)的
1
2
D、不變

查看答案和解析>>

同步練習(xí)冊(cè)答案