【題目】某電器超市銷售每臺進價分別為160元、120元的A、B兩種型號的電風扇,如表是近兩周的銷售情況:(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

4

1200

第二周

5

6

1900

1)求A、B兩種型號的電風扇的銷售單價;

2)若超市準備用不多于7500元的金額再采購這兩種型號的電風扇共50臺,求A種型號的電風扇最多能采購多少臺?

【答案】1)分別為200元、150元;(2A種型號電風扇37臺時,采購金額不多于7500

【解析】

1)設(shè)A、B兩種型號電風扇的銷售單價分別為x元、y元,根據(jù)3A型號4B型號的電扇收入1200元,5A型號6B型號的電扇收入1900元,列方程組求解;

2)設(shè)采購A種型號電風扇a臺,則采購B種型號電風扇(50a)臺,根據(jù)金額不多余7500元,列不等式求解.

解:(1)設(shè)A、B兩種型號電風扇的銷售單價分別為x元、y元,

依題意得:,解得:,

答:A、B兩種型號電風扇的銷售單價分別為200元、150元.

2)設(shè)采購A種型號電風扇a臺,則采購B種型號電風扇(50a)臺.

依題意得:160a+12050a≤7500,解得:a≤37

答:超市最多采購A種型號電風扇37臺.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,要從中選出兩位同學打笫一場比賽.

(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率;

(2)若已確定甲打第一場,再從其余三位同學中隨機選取一位,求恰好選中乙同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明的爸爸是一名出租車司機,一天下午小明的爸爸以某超市為出發(fā)點,在東西方向的公路上運營,記向東為正,向西為負,以先后次序記錄如下:(單位km

+5,﹣3,﹣5+4,﹣8,+6,﹣4

1)將最后一名乘客送到目的地時,出租車離出發(fā)點有多遠?在它的什么方向?

2)若每千米收費為2元,小明爸爸這個下午的營業(yè)額是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABO的頂點A是雙曲線y1與直線y2=-x-(k+1)在第二象限的交點.ABx軸于B,且SABO

(1)求這兩個函數(shù)的解析式;

(2)求AOC的面積.

(3)直接寫出使y1>y2成立的x的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017濟寧,第21題,9分)已知函數(shù)的圖象與x軸有兩個公共點.

(1)求m的取值范圍,并寫出當m取范圍內(nèi)最大整數(shù)時函數(shù)的解析式;

(2)題(1)中求得的函數(shù)記為C1

①當nx≤﹣1時,y的取值范圍是1≤y≤﹣3n,求n的值;

②函數(shù)的圖象由函數(shù)C1的圖象平移得到,其頂點P落在以原點為圓心,半徑為的圓內(nèi)或圓上,設(shè)函數(shù)C1的圖象頂點為M,求點P與點M距離最大時函數(shù)C2的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=41,則∠AOF等于( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于xy的二元一次方程ax+bya,b為常數(shù)且a≠0

1)該方程的解有   組;若a=﹣2,b6,且x,y為非負整數(shù),請直接寫出該方程的解;

2)若是該方程的兩組解,且m1m2

①若n1n22m2m1),求a的值;

②若m1+m23b,n1+n2ab+4,且b2,請比較n1n2大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點和三角形在同一平面內(nèi).

1)如圖1,點邊上,.,求的度數(shù).

2)如圖2,點的延長線上,,,證明:.

3)點是三角形外部的任意一點,過交直線交直線,直接寫出的數(shù)量關(guān)系(不需證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,有一,,,,已知是由繞某點順時針旋轉(zhuǎn)得到的.

(1)請寫出旋轉(zhuǎn)中心的坐標是 ,旋轉(zhuǎn)角是 度;

(2)(1)中的旋轉(zhuǎn)中心為中心,分別畫出順時針旋轉(zhuǎn)90°、180°的三角形;

(3)設(shè)兩直角邊、、斜邊,利用變換前后所形成的圖案驗證勾股定理.

查看答案和解析>>

同步練習冊答案