【題目】已知四邊形是正方形,、相交于點(diǎn),過(guò)點(diǎn)的平分線分別交、于點(diǎn)

1)如圖,求證:

2)如圖,連接,在不添加其他字母和輔助線的條件下,直接寫(xiě)出圖中所有的等腰三角形(等腰直角三角形除外).

【答案】1)見(jiàn)解析;(2, .

【解析】

1)取AF的中點(diǎn)G,連接OG,根據(jù)三角形的中位線得出OG=FCOG//FC,根據(jù)正方形的性質(zhì)求出∠0AB、∠ABO、∠OCB的度數(shù),求出∠OEA和∠OGF的度數(shù),推出OG=OE即可;

2)由已知條件和三角形內(nèi)角和定理可得∠DAE=DEA,∠DEC=DCE,∠BEF=BFE,進(jìn)而可得DAE;DCEBEF是等腰三角形,由垂直平分線的性質(zhì)可得AE=CE進(jìn)而可得AEC是等腰三角形.

解:證明:(1)如圖:取的中點(diǎn)G,連接OG

∵正方形,、交于點(diǎn),

,

,

平分,

2

∵四邊形ABCD是正方形,

BDAC,AO=CO,∠BAC=DAC=45°,

AE=CE

∴△AEC是等腰三角形;

∵過(guò)點(diǎn)A作∠BAC的平分線分別交BDBCE、F,

∴∠BAF=CAF=22.5°,

∴∠DAE=67.5°,

∴∠AED=67.5°

AD=ED,

∴△ADE是等腰三角形,AE=CE,

∵∠ECA=EAC=22.5°,

∴∠ECD=67.5°

∴∠DEC=DCE=67.5°,

DE=CE

∴△DEC是等腰三角形,

∵∠BEF=BFE=67.5°,

BE=BF,

∴△BEF是等腰三角形.

可直接寫(xiě)出圖中所有的等腰三角形有:, , .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△AOB的三個(gè)頂點(diǎn)AO、B分別落在拋物線F1的圖象上,點(diǎn)A的橫坐標(biāo)為﹣4,點(diǎn)B的縱坐標(biāo)為﹣2.(點(diǎn)A在點(diǎn)B的左側(cè))

(1)求點(diǎn)AB的坐標(biāo);

(2)將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△A'OB',拋物線F2經(jīng)過(guò)A'、B'兩點(diǎn),已知點(diǎn)M為拋物線F2的對(duì)稱軸上一定點(diǎn),且點(diǎn)A'恰好在以OM為直徑的圓上,連接OM、A'M,求△OA'M的面積;

(3)如圖2,延長(zhǎng)OB'交拋物線F2于點(diǎn)C,連接A'C,在坐標(biāo)軸上是否存在點(diǎn)D,使得以A、OD為頂點(diǎn)的三角形與△OA'C相似.若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)數(shù)學(xué)理解:如圖,△ABC是等腰直角三角形,過(guò)斜邊AB的中點(diǎn)D作正方形DECF,分別交BCAC于點(diǎn)E,F,求AB,BEAF之間的數(shù)量關(guān)系;

2)問(wèn)題解決:如圖,在任意直角△ABC內(nèi),找一點(diǎn)D,過(guò)點(diǎn)D作正方形DECF,分別交BC,AC于點(diǎn)E,F,若ABBE+AF,求∠ADB的度數(shù);

3)聯(lián)系拓廣:如圖,在(2)的條件下,分別延長(zhǎng)ED,FD,交AB于點(diǎn)M,N,求MN,AM,BN的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,為原點(diǎn),點(diǎn),點(diǎn),把繞點(diǎn)順時(shí)針旋轉(zhuǎn),得,點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為,.記旋轉(zhuǎn)角為.

()如圖①,若,求的長(zhǎng);

()如圖②,若,求點(diǎn)的坐標(biāo);

()的中點(diǎn),S的面積,求S的取值范圍(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)進(jìn)行促銷活動(dòng),出售一種優(yōu)惠購(gòu)物卡(注:此卡只作為購(gòu)物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場(chǎng)按標(biāo)價(jià)的8折購(gòu)物.若不夠卡購(gòu)物和使用優(yōu)惠卡購(gòu)物分別視為方式一購(gòu)物和方式二購(gòu)物,且設(shè)顧客購(gòu)買商品的金額為元.

(Ⅰ)根據(jù)題意,填寫(xiě)下表:

商品金額(元)

300

600

1000

方式一的總費(fèi)用(元)

300

600

1000

方式二的總費(fèi)用(元)

540

(Ⅱ)顧客購(gòu)買多少元金額的商品時(shí),買卡與不買卡花錢相等?

(Ⅲ)小張要買一臺(tái)標(biāo)價(jià)為3500元的冰箱,如何購(gòu)買合算?小張能節(jié)省多少元錢?

(Ⅳ)小張按合算的方案,把這臺(tái)冰箱買下,如果該商場(chǎng)還能盈利,那么這臺(tái)冰箱的進(jìn)價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)斜拋物體的水平運(yùn)動(dòng)距離為xm),對(duì)應(yīng)的高度記為hm),且滿足hax2+bx11a(其中a≠0).已知當(dāng)x0時(shí),h2;當(dāng)x10時(shí),h2

1)求h關(guān)于x的函數(shù)表達(dá)式.

2)求斜拋物體的最大高度和達(dá)到最大高度時(shí)的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

我們知道一次函數(shù),是常數(shù))的圖象是一條直線,到高中學(xué)習(xí)時(shí),直線通常寫(xiě)成 ,是常數(shù))的形式,點(diǎn)到直線的距離可用公式計(jì)算.

例如:求點(diǎn)到直線的距離.

解:∵

其中

∴點(diǎn)到直線的距離為:

根據(jù)以上材料解答下列問(wèn)題:

1)求點(diǎn)到直線的距離;

2)如圖,直線沿軸向上平移2個(gè)單位得到另一條直線,求這兩條平行直線之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某出租公司有若干輛同一型號(hào)的貨車對(duì)外出租,每輛貨車的日租金實(shí)行淡季、旺季兩種價(jià)格標(biāo)準(zhǔn),旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計(jì),淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.

1)該出租公司這批對(duì)外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?

2)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會(huì)減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時(shí),該出租公司的日租金總收入最高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.已知:在矩形中,是對(duì)角線,于點(diǎn),于點(diǎn);

1)如圖1,求證:;

2)如圖2,當(dāng)時(shí),連接.,在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出圖2中四個(gè)三角形,使寫(xiě)出的每個(gè)三角形的面積都等于矩形面積的.

查看答案和解析>>

同步練習(xí)冊(cè)答案