【題目】如圖一段拋物線y=-xx-5)(0≤x≤5),記為C1,它與x軸交于點OA1;C1繞點A1旋轉180°C2,x軸于點A2;C2繞點A2旋轉180°C3,x軸于點A3;…如此進行下去,P(2 017,m是其中某段拋物線上一點,m(  )

A. 4B. -4C. -6D. 6

【答案】C

【解析】

∵一段拋物線:y=-x(x-5)(0≤x≤5),

圖象與x軸交點坐標為:(0,0),(5,0),

∵將C1繞點A1旋轉180°得C2,交x軸于點A2;

C2繞點A2旋轉180°得C3,交x軸于點A3;

如此進行下去,

2017÷5=403……2,

因此按照上述方法進行下去,直至得C404,

∴C404x軸的交點橫坐標為(2015,0),(2020,0),且圖象在x軸下方,

∴C404的解析式為:y404=(x-2015)(x-2020),

x=2017時,y=(2017-2015)×(2017-2020)=-6,

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,O為坐標原點,點A4,0),以OA為對角線作正方形ABOC,若將拋物線y=x2沿射線OC平移得到新拋物線y=x-m2+km0).則當新拋物線與正方形的邊AB有公共點時,m的值一定是(

A. 26,8B. 0<m≤6C. 0<m≤8D. 0<m≤2 6 ≤ m≤8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為a,點E在邊AB上運動(不與點A,B重合),∠DAM=45°,點F在射線AM上,且CFAD相交于點G,連接ECEF,EG,則下列結論:①∠ECF=45°;②的周長為;③ ;④的面積的最大值.其中正確的結論是____.(填寫所有正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出以下命題:

①平分弦的直徑垂直于這條弦;

②已知點、均在反比例函數(shù)的圖象上,則;

③若關于x的不等式組無解,則;

④將點向左平移3個單位到點,再將繞原點逆時針旋轉90°到點,則的坐標為

其中所有真命題的序號是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】扶貧攻堅活動中,某單位計劃選購甲、乙兩種物品慰問貧困戶.已知甲物品的單價比乙物品的單價高10元,若用500元單獨購買甲物品與450元單獨購買乙物品的數(shù)量相同.

①請問甲、乙兩種物品的單價各為多少?

②如果該單位計劃購買甲、乙兩種物品共55件,總費用不少于5000元且不超過5050元,通過計算得出共有幾種選購方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經市場調查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.

(1)求A種,B種樹木每棵各多少元?

(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,在教學實踐課中,小明為了測量學校旗桿CD的高度,在地面A處放置高度為1.5米的測角儀AB,測得旗桿頂端D的仰角為32°AC=22米,求旗桿CD的高度.(結果精確到0.1米.參考數(shù)據(jù):sin32°≈0.53cos32°≈0.85,tan32°≈0.62

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖像交坐標軸于A-1,0),B4,0),C0,-4)三點,點P是直線BC下方拋物線上一動點.

1)求這個二次函數(shù)的解析式;

2)是否存在點P,使△POC是以OC為底邊的等腰三角形?若存在,求出P點坐標;若不存在,請說明理由;

3)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標和△PBC的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校計劃為我和我的祖國演講比賽購買獎品.已知購買3A獎品和2B獎品共需120元;購買5A獎品和4B獎品共需210元.

1)求A,B兩種獎品的單價;

2)學校準備購買A,B兩種獎品共30個,且A獎品的數(shù)量不少于B獎品數(shù)量的.請設計出最省錢的購買方案,并說明理由.

查看答案和解析>>

同步練習冊答案