【題目】如圖1,在正方形ABCD中,點(diǎn)P為AD延長線上一點(diǎn),連接AC、CP,過點(diǎn)C作CF⊥CP交于C,交AB于點(diǎn)F,過點(diǎn)B作BM⊥CF于點(diǎn)N,交AC于點(diǎn)M.

(1)若AP=AC,BC=4,求S△ACP

(2)若CP﹣BM=2FN,求證:BC=MC;

【答案】(1)S△ACP=7;(2)證明見解析.

【解析】試題分析:1)由正方形的性質(zhì)得出AB=BC=CD=4,ADC=CDP=ABC=BCD=90°,由勾股定理求出AC,得出AP,即可求出SACP;(2)在CF上截取NG=FN,連接BG,則CF-CG=2FN,證出∠BCF=DCP,由ASA證明BCF≌△DCP,得出CF=CP,證出CG=BM,由SAS證明ABM≌△BCG,得出∠AMB=BGC,因此∠BMC=BGF,由線段垂直平分線的性質(zhì)得出BF=BG,得出∠BFG=BGF,因此∠BMC=CBM,即可得出結(jié)論

試題解析:1∵四邊形ABC是正方形,

ADBC,AB=BC=CD=4,ADC=CDP=ABC=BCD=90°,

AC=,

∴AP=AC=×=,

∴S△ACP=AP×CD=××4=7

2)證明:在CF上截取NG=FN,連接BG,如圖1所示:

CF﹣CG=2FN

CFCP,

∴∠PCF=90°,

∴∠BCF=DCP

BCFDCP中, ,

∴△BCF≌△DCPASA),

CF=CP,

CP﹣BM=2FN

CG=BM,

∵∠ABC=90°,BMCF

∴∠ABM=BCG,BFG=CBM,

ABMBCG中, ,

∴△ABM≌△BCGSAS),

∴∠AMB=BGC

∴∠BMC=BGF,

GN=FN,BMCF,

BF=BG,

∴∠BFG=BGF

∴∠BMC=CBM,

BC=MC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(1)班男生有24人,女生有26人,從中任選一人是男生的事件是事件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCDOOE⊥AB

1)若∠EOD=20°,求∠AOC的度數(shù);

2)若∠AOC∠BOC=12,求∠EOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P關(guān)于y軸的對稱點(diǎn)P1的坐標(biāo)是(2,3),則點(diǎn)P坐標(biāo)是( )
A.(﹣3,﹣2)
B.(﹣2,3)
C.(2,﹣3)
D.(3,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC5,cos∠ABC,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到△A1B1C

1)如圖,當(dāng)點(diǎn)B1在線段BA延長線上時(shí).求證:BB1∥CA1;△AB1C的面積;

2)如圖,點(diǎn)EBC邊的中點(diǎn),點(diǎn)F為線段AB上的動點(diǎn),在△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)過程中,點(diǎn)F的對應(yīng)點(diǎn)是F1,求線段EF1長度的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程中變形正確的是(

3x+6=0變形為x+2=0;

2x+8=5-3x變形為x=3;

=4去分母,得3x+2x=24;

(x+2)-2(x-1)=0去括號,得x+2-2x-2=0.

A. ①③ B. ①②③ C. ①④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李先生在2015年11月第2周星期五股市收盤時(shí),以每股9元的價(jià)格買進(jìn)某公司的股票1000股,在11月第3周的星期一至星期五,該股票每天收盤時(shí)每股的漲跌(單位:元)情況如下表:

注:表中記錄的數(shù)據(jù)為每天收盤價(jià)格與前一天收盤價(jià)格的變化量,星期一的數(shù)據(jù)是與上星期五收盤價(jià)格的變化量.

(1)請你判斷在11月的第3周內(nèi),該股票價(jià)格收盤時(shí),價(jià)格最高的是哪一天?

(2)在11月第3周內(nèi),求李先生購買的股票每股每天平均的收盤價(jià)格.(結(jié)果精確到百分位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果x=3m+1,y=2+9m , 那么用x的代數(shù)式表示y為(
A.y=2x
B.y=x2
C.y=(x﹣1)2+2
D.y=x2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化,開始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):

(1)開始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?

(2)一道數(shù)學(xué)競賽題,需要講16分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

同步練習(xí)冊答案