【題目】定義符號max﹛a , b﹜的含義為:當(dāng)a≥b時, max﹛a , b﹜=a;當(dāng)a<b時,max﹛a , b﹜=b.如 max﹛2 , -3﹜=2 , max﹛-4 , -2﹜=-2,則max﹛-x2+2x+3 , |x|﹜的最小值是_________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,在內(nèi)并排不重疊放入邊長為1的小正方形紙片,第一層小紙片的一條邊都在AB上,首尾兩個正方形各有一個頂點分別在AC、BC上,依次這樣擺放上去,則最多能擺放 個小正方形紙片.
A. 14個 B. 15個 C. 16個 D. 17個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探索新知)如圖1,點在線段上,圖中共有3條線段:、、和,若其中有一條線段的長度是另一條線段長度的兩倍,則稱點是線段的“二倍點”.
(1)一條線段的中點 這條線段的“二倍點”;(填“是”或“不是”)
(深入研究)如圖2,點表示數(shù)-10,點表示數(shù)20,若點從點,以每秒3的速度向點運動,當(dāng)點到達點時停止運動,設(shè)運動的時間為秒.
(2)點在運動過程中表示的數(shù)為 (用含的代數(shù)式表示);
(3)求為何值時,點是線段的“二倍點”;
(4)同時點從點的位置開始,以每秒2的速度向點運動,并與點同時停止.請直接寫出點是線段的“二倍點”時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,點,點分別表示數(shù),則線段的長度可以用表示.
例如:在數(shù)軸上點表示5,點表示2,則線段的長表示為.
(1)若線段的長表示為6,,則的值等于____________;
(2)已知數(shù)軸上的任意一點表示的數(shù)是,且的最小值是4,若,則____________;
(3)已知點在點的右邊,且,若,,試判斷的符號,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到的位置,連接,則的長為( ).
A. B. C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6.點P從點A出發(fā),沿AC以每秒1個單位的速度向終點C運動;點Q從點C出發(fā),沿C-B-A以每秒2個單位的速度向終點A運動.當(dāng)點P停止運動時,點Q也隨之停止.點P、Q同時出發(fā),設(shè)點P的運動時間為t(秒).
(1)求AB的長.
(2)用含t的代數(shù)式表示CP的長.
(3)設(shè)點Q到CA的距離為y,求y與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景 如圖1,在△ABC中,BC=4,AB=2AC.
問題初探 請寫出任意一對滿足條件的AB與AC的值:AB= ,AC= .
問題再探 如圖2,在AC右側(cè)作∠CAD=∠B,交BC的延長線于點D,求CD的長.
問題解決 求△ABC的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,DE⊥AD,交AB于點E,AE為⊙O的直徑.
(1)判斷BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)求證:△ABD∽△DBE;
(3)若cosB=,AE=4,求CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳生活,綠色出行”,2017年1月,某公司向深圳市場新投放共享單車640輛.
(1)若1月份到4月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000輛.請問該公司4月份在深圳市新投放共享單車多少輛?
(2)考慮到自行車市場需求不斷增加,某商城準(zhǔn)備用不超過70000元的資金再購進A,B兩種規(guī)格的自行車100輛,已知A型的進價為500元/輛,售價為700元/輛,B型車進價為1000元/輛,售價為1300元/輛。假設(shè)所進車輛全部售完,為了使利潤最大,該商城應(yīng)如何進貨?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com