【題目】如圖 1,在矩形 ABCD 中,AB=8,AD=10,E 是 CD 邊上一點(diǎn),連接 AE,將矩形 ABCD 沿 AE 折疊,頂點(diǎn) D 恰好落在 BC 邊上點(diǎn) F 處,延長 AE 交 BC 的延長線于點(diǎn)G.
(1)求線段 CE 的長;
(2)如圖 2,M,N 分別是線段 AG,DG 上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且∠DMN=∠DAM, 設(shè) DN=x.
①求證四邊形 AFGD 為菱形;
②是否存在這樣的點(diǎn) N,使△DMN 是直角三角形?若存在,請求出 x 的值;若不存在, 請說明理由.
【答案】(1)CE=3;(2)①見解析;②或2.
【解析】
(1)由翻折可知:AD=AF=10.DE=EF,設(shè)EC=x,則DE=EF=8x.在Rt△ECF中,利用勾股定理構(gòu)建方程即可解決問題.
(2)①由△ADE∽△GCE計(jì)算出GC的長度,再證明四邊形AFGD是平行四邊形,根據(jù)一組鄰邊相等的平行四邊形的菱形即可證明;
②若△DMN 是直角三角形,則有兩種情況,一是當(dāng)∠MDN=90°時(shí),二是當(dāng)∠DNM=90°時(shí),分別利用相似三角形的性質(zhì)以及銳角三角函數(shù)的定義即可計(jì)算得出.
解:(1)∵四邊形ABCD是矩形,
∴AD=BC=10,AB=CD=8,
∴∠B=∠BCD=90°,
由翻折可知:AD=AF=10.DE=EF,設(shè)CE=x,則DE=EF=8x.
在Rt△ABF中,BF=,
∴CF=BCBF=106=4,
在Rt△EFC中,則有:(8x)2=x2+42,
∴x=3,
∴CE=3.
(2)①證明:∵四邊形ABCD是矩形,
∴AD∥BC
∴△ADE∽△GCE,
∴,
∵AD=10,CE=3,DE=5,
∴,
∴GC=6,
由(1)可得:CF=4,
∴GF=6+4=10,
∴四邊形AFGD是平行四邊形,
又∵AD=AF,
∴平行四邊形AFGD是菱形.
②∵∠DMN=∠DAM,
∴若△DMN 是直角三角形,則有兩種情況,
當(dāng)∠MDN=90°時(shí),
∵AD=GD,
∴∠DAG=∠DGA
又∵∠ADE=∠GDM=90°,
∴△ADE≌△GDM(ASA)
∴DM=DE=5,
又∵∠DMN=∠DAM,∠ADE=∠MDN=90°,
∴△ADE∽△MDN
∴,即,
∴;
當(dāng)∠DNM=90°時(shí),則∠MDN+∠DMN=90°,
又∵∠DMN=∠DAM,∠DAG=∠DGA,
∴∠DMN=∠DGA,
∴∠MDN+∠DGA=90°,
∴∠DMG=90°,
∵sin∠DAE=,
∵,
∴,
∴DM=,
∵∠DMN=∠DAM
∴sin∠DMN=sin∠DAM
∴,即
解得:x=2,
綜上所述:或2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⑴如圖1,點(diǎn)C在線段AB上,點(diǎn)D、E在直線AB同側(cè),∠A=∠DCE=∠CBE,DC=CE.求證:AC=BE.
⑵如圖2,點(diǎn)C在線段AB上,點(diǎn)D、E在直線AB同側(cè),∠A=∠DCE=∠CBE=90°.
①求證:;②連接BD,若∠ADC=∠ABD,AC=3,BC=,求tan∠CDB的值;
⑶如圖3,在△ABD中,點(diǎn)C在AB邊上,且∠ADC=∠ABD,點(diǎn)E在BD邊上,連接CE,∠BCE+∠BAD=180°,AC=3,BC=,CE=,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,動(dòng)點(diǎn)M、N同時(shí)從A點(diǎn)出發(fā),點(diǎn)M沿AB以每秒1個(gè)單位長度的速度向中點(diǎn)B運(yùn)動(dòng),點(diǎn)N沿折現(xiàn)ADC以每秒2個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,則△CMN的面積為S關(guān)于t函數(shù)的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,D為AB的中點(diǎn),點(diǎn)E為AC延長線上一點(diǎn),連接DE,過點(diǎn)D作DF⊥DE交CB的延長線于點(diǎn)F.
(1)求證:BF=CE;
(2)若CE=AC,用等式表示線段DF與AB的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(﹣3,2).
(1)求它的解析式;
(2)在直角坐標(biāo)中畫出該反比例函數(shù)的圖象;
(3)若﹣3<x<﹣2,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著城市化建設(shè)的發(fā)展,交通擁堵成為上班高峰時(shí)難以避免的現(xiàn)象.為了解龍泉驛某條道路交通擁堵情況,龍泉某中學(xué)同學(xué)經(jīng)實(shí)地統(tǒng)計(jì)分析研究表明:當(dāng)時(shí),車流速度v(千米/小時(shí))是車流密度x(輛/千米)的一次函數(shù).當(dāng)該道路的車流密度達(dá)到220輛/千米時(shí),造成堵塞,此時(shí)車流速度為0千米/小時(shí);當(dāng)車流密度為95輛/千米時(shí),車流速度為50千米/小時(shí).
(1)當(dāng)時(shí),求車流速度v(千米/小時(shí))與車流密度x(輛/千米)的函數(shù)關(guān)系式;
(2)為使該道路上車流速度大于40千米/小時(shí)且小于60千米/小時(shí),應(yīng)控制該道路上的車流密度在什么范圍內(nèi)?
(3)車流量(輛/小時(shí))是單位時(shí)間內(nèi)通過該道路上某觀測點(diǎn)的車輛數(shù),即:車流量=車流速度×車流密度.當(dāng)時(shí),求該道路上車流量y的最大值.此時(shí)車流速度為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,-1),拋物線經(jīng)過點(diǎn)B,且與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,且點(diǎn)D的橫坐標(biāo)為t(0<t<4),DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2).若矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)M是平面內(nèi)一點(diǎn),將△AOB繞點(diǎn)M沿逆時(shí)針方向旋轉(zhuǎn)90°后,得到△A'O'B',點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A'、O'、B'. 若△A'O'B'的兩個(gè)頂點(diǎn)恰好落在拋物線上,請直接寫出點(diǎn)A’的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形中, ,垂足為與的延長線相交于,且,連接;
(1)如圖,求證:四邊形是菱形;
(2)如圖,連接,若,在不添加任何輔助線的情況下,直接寫出圖中所有面積等于的面積的鈍角三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com