【題目】如圖,已知:在△ABC中,∠A=90°,AB=AC=1,P是AC上不與A、C重合的一動(dòng)點(diǎn),PQ⊥BC于Q,QR⊥AB于R.
(1)求證:PQ=CQ;
(2)設(shè)CP的長(zhǎng)為x,QR的長(zhǎng)為y,求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍,并在平面直角坐標(biāo)系作出函數(shù)圖象.
(3)PR能否平行于BC?如果能,試求出x的值;若不能,請(qǐng)簡(jiǎn)述理由.
【答案】(1)證明見解析;(2)y=﹣x+(0<x<1);(3)PR不能平行于BC.
【解析】試題分析:(1)根據(jù)題意易得△ABC是等腰直角三角形,則∠B=∠C=45°,然后利用PQ⊥CQ可得到△PCQ為等腰直角三角形,由此得證;
(2)根據(jù)等腰直角三角形的性質(zhì)求出BC=AB=,CQ=PC=x,同理可證得△BQR是等腰直角三角形,則BQ=RQ=y,所以可得y+x=,變形可求出解析式,然后描點(diǎn)畫圖即可;
(3)由AR=1–y,AP=1–x,則AR=1–(–x+1),當(dāng)AR=AP時(shí),PR∥BC,所以1–(–x+1)=1–x,解得x=,然后利用0<x<1可判斷.
試題解析:(1)∵∠A=90°,AB=AC=1,
∴△ABC為等腰直角三角形,
∴∠B=∠C=45°,
∵PQ⊥CQ,
∴△PCQ為等腰直角三角形,
∴PQ=CQ;
(2)解:∵△ABC為等腰直角三角形,
∴BC=AB=,
∵△PCQ為等腰直角三角形,
∴CQ=PC=x,
同理可證得為△BQR等腰直角三角形,
∴BQ=RQ=y,
∵BQ+CQ=BC,
∴y+x=,
∴y=–x+1(0<x<1),
如圖,
(3)能.
理由如下:
∵AR=1–y,AP=1–x,
∴AR=1–(–x+1),
當(dāng)AR=AP時(shí),PR∥BC,
即1–(–x+1)=1–x,
解得x=,
∵0<x<1,∴PR能平行于BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為“方便交通,綠色出行”,人們常選擇以共享單車作為代步工具、圖(1)所示的是一輛自行車的實(shí)物圖.圖(2)是這輛自行車的部分幾何示意圖,其中車架檔AC與CD的長(zhǎng)分別為45cm和60cm,且它們互相垂直,座桿CE的長(zhǎng)為20cm.點(diǎn)A、C、E在同一條直線上,且∠CAB=75°.
(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259,tan75°=3.732)
圖(1) 圖(2)
(1)求車架檔AD的長(zhǎng);
(2)求車座點(diǎn)E到車架檔AB的距離(結(jié)果精確到1cm).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1.在△ABC中,∠ACB=90°,AC=BC=,以B為圓心、1為半徑作圓,設(shè)點(diǎn)P為⊙B上一點(diǎn),線段CP繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到線段CD,連接DA、PD、PB.
(1)求證:AD=BP;
(2)若DP與⊙B相切,則∠CPB的度數(shù)為 ;
(3)如圖2,當(dāng)B、P、D三點(diǎn)在同一條直線上時(shí),求BD的長(zhǎng);
(4)BD的最小值為 ;BD的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸正半軸上的,兩點(diǎn)分別表示有理數(shù),,為原點(diǎn),若,線段.
(1)______,______;
(2)若點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度向軸正半軸運(yùn)動(dòng),求運(yùn)動(dòng)時(shí)間為多少時(shí);點(diǎn)到點(diǎn)的距離是點(diǎn)到點(diǎn)距離的3倍;
(3)數(shù)軸上還有一點(diǎn)表示的數(shù)為32,若點(diǎn)和點(diǎn)同時(shí)從點(diǎn)和點(diǎn)出發(fā),分別以每秒2個(gè)單位長(zhǎng)度和每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)到達(dá)點(diǎn)后,再立刻以同樣的速度返回,運(yùn)動(dòng)到終點(diǎn),求點(diǎn)和點(diǎn)運(yùn)動(dòng)多少秒時(shí),、兩點(diǎn)之間的距離為4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別交于兩點(diǎn),是的中點(diǎn),是上一點(diǎn),四邊形是菱形,則面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線AC⊥BD,垂足為O,點(diǎn)E,F,G,H分別為邊AB,BC,CD,AD的中點(diǎn).若AC=10,BD=6,則四邊形EFGH的面積為( 。
A. 15B. 20C. 30D. 60
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“單詞的記憶效率“是指復(fù)習(xí)一定量的單詞,一周后能正確默寫出的單詞個(gè)數(shù)與復(fù)習(xí)的單詞個(gè)數(shù)的比值.如圖描述了某次單詞復(fù)習(xí)中小華,小紅小剛和小強(qiáng)四位同學(xué)的單詞記憶效率y與復(fù)習(xí)的單詞個(gè)數(shù)x的情況,則這四位同學(xué)在這次單詞復(fù)習(xí)中正確默寫出的單詞個(gè)數(shù)最多的是( 。
A. 小華B. 小紅C. 小剛D. 小強(qiáng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,CE∥x軸與拋物線相交于點(diǎn)E,點(diǎn)H是直線CE下方拋物線上的動(dòng)點(diǎn),過點(diǎn)H且與y軸平行的直線與BC,CE分別相交于點(diǎn)F,G,試探究當(dāng)點(diǎn)H運(yùn)動(dòng)到何處時(shí),四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo);
(3)若點(diǎn)K為拋物線的頂點(diǎn),點(diǎn)M(4,m)是該拋物線上的一點(diǎn),在x軸,y軸上分別找點(diǎn)P,Q,使四邊形PQKM的周長(zhǎng)最小,求出點(diǎn)P,Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)A在原點(diǎn)左側(cè),點(diǎn)B在原點(diǎn)右側(cè),且點(diǎn)A到原點(diǎn)的距離是點(diǎn)B到原點(diǎn)距離的2倍,AB=15.
(1)點(diǎn)A表示的數(shù)為________,點(diǎn)B表示的數(shù)為________;
(2)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B方向運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),先向點(diǎn)A方向運(yùn)動(dòng),當(dāng)與點(diǎn)P重合后,馬上改變方向與點(diǎn)P同向而行且速度始終為每秒2個(gè)單位長(zhǎng)度。設(shè)運(yùn)動(dòng)時(shí)間為t秒。
①當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求t的值;
②當(dāng)點(diǎn)P是線段AQ的三等分點(diǎn)時(shí),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com