【題目】某蔬菜公司收購蔬菜進(jìn)行銷售的獲利情況如下表所示:
銷售方式 | 直接銷售 | 粗加工后銷售 | 精加工后銷售 |
每噸獲利(元) | 100 | 250 | 450 |
現(xiàn)在該公司收購了140噸蔬菜,已知該公司每天能精加工蔬菜6噸和粗加工蔬菜16噸(兩種加工不能同時進(jìn)行)。
(1)如果要求在18天內(nèi)全部銷售這140噸蔬菜,請完成下列表格:
銷售方式 | 全部直接銷售 | 全部粗加工后銷售 | 盡量精加工,剩余部分直接銷售 |
獲利(元) |
(2)如果先進(jìn)行精加工,來不及精加工的進(jìn)行粗加工,要求15天內(nèi)剛好加工完這140噸蔬菜,則應(yīng)如何分配加工時間?
【答案】(1)14000元;35000元;51800元.;(2)安排10天進(jìn)行精加工,5天進(jìn)行粗加工.
【解析】
(1)全部直接銷售獲利=140×100;全部粗加工后銷售獲利=140×250;盡量精加工,剩余部分直接銷售獲利=18×6×450+(140-18×6)×100,計(jì)算結(jié)果填入表格即可;
(2)由題意列二元一次方程組求解;
解:(1)全部直接銷售獲利=140×100=14000;
全部粗加工后銷售獲利=140×250=35000;
盡量精加工,剩余部分直接銷售獲利=18×6×450+(140-18×6)×100=51800.
如下表所示:
銷售方式 | 全部直接銷售 | 全部粗加工后銷售 | 盡量精加工,剩余部分直接銷售 |
獲利(元) | 14000 | 35000 | 51800 |
(2)設(shè)應(yīng)安排x天進(jìn)行精加工,y天進(jìn)行粗加工,根據(jù)題意得:
,
解得.
答:應(yīng)安排10天進(jìn)行精加工,5天進(jìn)行粗加工.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面宜角坐標(biāo)系xOy中,直線y=x+4與x軸,y軸交于點(diǎn)A,B.第一象限內(nèi)有一點(diǎn)P(m,n),正實(shí)數(shù)m,n滿足4m+3n=12
(1)連接AP,PO,△APO的面積能否達(dá)到7個平方單位?為什么?
(2)射線AP平分∠BAO時,求代數(shù)式5m+n的值;
(3)若點(diǎn)A′與點(diǎn)A關(guān)于y軸對稱,點(diǎn)C在x軸上,且2∠CBO+∠PA′O=90°,小慧演算后發(fā)現(xiàn)△ACP的面積不可能達(dá)到7個平方單位.請分析并評價“小薏發(fā)現(xiàn)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為線段上一點(diǎn),點(diǎn)為的中點(diǎn),且,
(1)求的長
(2)若點(diǎn)在直線上,且,求的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB上,且AE∶EB=1∶2,F(xiàn)是BC的中點(diǎn),過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP∶DQ等于
A.3∶4 B.∶ C.∶ D.∶
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在數(shù)軸上點(diǎn)A,B所對應(yīng)的數(shù)是-4,4.
對于關(guān)于x的代數(shù)式N,我們規(guī)定:當(dāng)有理數(shù)x在數(shù)軸上所對應(yīng)的點(diǎn)為AB之間(包括點(diǎn)A,B)的任意一點(diǎn)時,代數(shù)式N取得所有值的最大值小于等于4,最小值大于等于-4,則稱代數(shù)式N是線段AB的封閉代數(shù)式.
例如,對于關(guān)于x的代數(shù)式|x|,當(dāng)x=±4時,代數(shù)式|x|取得最大值是4;當(dāng)x=0時,代數(shù)式|x|取得最小值是0,所以代數(shù)式|x|是線段AB的封閉代數(shù)式.
問題:
(1)關(guān)于x代數(shù)式|x-1|,當(dāng)有理數(shù)x在數(shù)軸上所對應(yīng)的點(diǎn)為AB之間(包括點(diǎn)A,B)的任意一點(diǎn)時,取得的最大值和最小值分別是____ ______.
所以代數(shù)式|x-1|__________(填是或不是)線段AB的封閉代數(shù)式.
(2)以下關(guān)x的代數(shù)式:
①;②x2+1;③x2+|x|-8;④|x+2|-|x-1|-1.
是線段AB的封閉代數(shù)式是__________,并證明(只需要證明是線段AB的封閉代數(shù)式的式子,不是的不需證明).
()關(guān)于x的代數(shù)式是線段AB的封閉代數(shù)式,則有理數(shù)a的最大值是__________,最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于點(diǎn)F.
(1)求證:△AEF≌△DEB;
(2)求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰Rt△ABC中,AB=AC,∠BAC=,點(diǎn)A、B分別在x軸和y軸上,點(diǎn)C的坐標(biāo)為(6,2).
(1)如圖1,求A點(diǎn)坐標(biāo);
(2)如圖2,延長CA至點(diǎn)D,使得AD=AC,連接BD,線段BD交x軸于點(diǎn)E,問:在x軸上是否存在點(diǎn)M,使得△BDM的面積等于△ABO的面積,若存在,求點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列解題過程,然后解答問題⑴、⑵,解方程:。
解:①當(dāng)3x≥0時,原方程可化為一元一次方程3x=1,它的解是;
②當(dāng)3x≤0時,原方程可化為一元一次方程-3x=1,它的解是。
⑴請你根據(jù)以上理解,解方程:;
⑵探究:當(dāng)b為何值時,方程,①無解;②只有一個解;③有兩個解。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com