【題目】計算下面各題
(1)計算:
(2)先化簡.再求值:a(a﹣2b)+2(a+b)(a﹣b)+(a+b)2 , 其中a=﹣ ,b=1.

【答案】
(1)

解: ,

=2 ﹣1+2× +

=3


(2)

解:a(a﹣2b)+2(a+b)(a﹣b)+(a+b)2 ,

=a2﹣2ab+2a2﹣2b2+a2+b2+2ab,
=4a2﹣b2 ,
當(dāng)a=﹣,b=1,原式=4a2﹣b2=4× -1,
=0.


【解析】(1)本題涉及零指數(shù)冪、特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪,二次根式四個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.
(2)根據(jù)單項式乘以多項式,平方差公式,完全平方公式分別計算,然后合并同類項,化簡后再代入a,b的值.
【考點精析】根據(jù)題目的已知條件,利用零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1l2,直線l3和直線l1l2分別交于點CD,P在直線l3

(1)若點PC,D兩點之間運動,PAC,APBPBD之間的關(guān)系是否發(fā)生變化?若變化請說明理由;若不變,請求出它們之間的關(guān)系式

(2)若點PCD兩點的外側(cè)運動(P與點C,D不重合),則∠PACAPB,PBD之間的關(guān)系又如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的方格形中,點A、BC在小正方形的頂點上.在BC上找一點P,使點PABAC的距離相等.

實驗與操作:

(1)在BC上找一點P,使點PABAC的距離相等;

(2)在射線AP上找到一點Q,使QB=QC.

探索與計算:

如果A點坐標(biāo)為(-1,-3),

(1)試在圖中建立平面直角坐標(biāo)系;

(2)若點M、N是坐標(biāo)系中小正方形的頂點,且四邊形QCMN是一個正方形,則 M點的坐標(biāo)是__________,N點的坐標(biāo)是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,分別以點A和點B為圓心,大于 AB的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD.若△ADC的周長為10,AB=7,則△ABC的周長為(
A.7
B.14
C.17
D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師從“淋浴龍頭”受到啟發(fā).編了一個題目: 在數(shù)軸上截取從0到3的對應(yīng)線段AB,實數(shù)m對應(yīng)AB上的點M,如圖1;將AB折成正三角形,使點A,B重合于點P,如圖2;建立平面直角坐標(biāo)系,平移此三角形,使它關(guān)于y軸對稱,且點P的坐標(biāo)為(0,2),PM與x軸交于點N(n,0),如圖3.當(dāng)m= 時,求n的值.

你解答這個題目得到的n值為(
A.4﹣2
B.2 ﹣4
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱的高是4cm,當(dāng)圓柱底面半徑r(cm)變化時,圓柱的體積V(cm3)也隨之變化.

(1)在這個變化過程中,寫出自變量,因變量;

(2) 寫出圓柱的體積V與底面半徑r的關(guān)系式;

(3)當(dāng)圓柱的底面半徑由2cm變化到8cm時,圓柱的體積由多少cm3變化到多少cm3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,用長為20的鐵絲焊接成一個長方形,設(shè)長方形的一邊為x,面積為y,隨著x的變化,y的值也隨之變化.

(1)寫出yx之間的關(guān)系式,并指出在這個變化中,哪個是自變量?哪個是因變量?

(2)用表格表示當(dāng)x1變化到9(每次增加1)y的相應(yīng)值;

x

1

2

3

4

5

6

7

8

9

y

(3)當(dāng)x為何值時,y的值最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進度,想在小山的另一側(cè)同時施工.為了使山的另一側(cè)的開挖點C在AB的延長線上,設(shè)想過C點作直線AB的垂線L,過點B作一直線(在山的旁邊經(jīng)過),與L相交于D點,經(jīng)測量ABD=135°,BD=800米,求直線L上距離D點多遠的C處開挖?(≈1.414,精確到1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE△ABC的角平分線,AD⊥BC于點D,點FBC的中點,若∠BAC=104°,∠C=40°,則有下列結(jié)論:①∠BAE=52°;②∠DAE=2°;③EF=ED;④SABFSABC.其中正確的個數(shù)有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案