【題目】如圖,點(diǎn)O為線段AB上任意一點(diǎn)(不與A、B重合),分別以AO、BO為一腰在AB的同側(cè)作等腰AOC和等腰BOD,OA=OC,OB=OD,AOC與∠BOD都是銳角,且∠AOC=BOD ,ADBC交于點(diǎn)P.

(1)試說(shuō)明CB=AD;

(2)若∠COD =80°,求∠APB的度數(shù)

【答案】(1)證明見(jiàn)解析;(2)APB=130°

【解析】

(1)證明∠AOD=∠COB,根據(jù)“SAS”證明全等;
(2)由∠COD=80°,∠AOC=∠BOD,求出∠AOC,根據(jù)△AOD≌△COB,得到∠OAD=∠OCB,由對(duì)頂角相等∠CMP=∠AMO,得到∠CPM=∠AOC=47°,根據(jù)鄰補(bǔ)角求出∠APB.

1)因?yàn)椤?/span>AOC=BOD

所以∠AOD=COB

AOD COB

因?yàn)?/span>OA=OC, AOD=COB ,OD =OB

所以AOD≌△COB

所以CB=AD

(2)因?yàn)椤?/span>COD=80°

所以∠AOC=BOD=50°

所以∠COB=130°

APB

APB+1+2=180°

COB

COB+3+2=180°

因?yàn)?/span>AOD≌△COB

所以∠1=3

所以∠APB=COB

所以∠APB=130°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從①∠1=∠2 ②∠C=∠D ③∠A=∠F 三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論所組成的命題中,正確命題的個(gè)數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全與每個(gè)師生、家長(zhǎng)和社會(huì)有著切身的關(guān)系.某校教學(xué)樓共五層,設(shè)有左、右兩個(gè)樓梯口,通常在放學(xué)時(shí),若持續(xù)不正常,會(huì)導(dǎo)致等待通過(guò)的人較多,發(fā)生擁堵,從而出現(xiàn)不安全因素.通過(guò)觀察發(fā)現(xiàn)位于教學(xué)樓二、三樓的七年級(jí)學(xué)生從放學(xué)時(shí)刻起,經(jīng)過(guò)單個(gè)樓梯口等待人數(shù)按每分鐘12人遞增,6分鐘后經(jīng)過(guò)單個(gè)樓梯口等待人數(shù)按每分鐘12人遞減;位于四、五樓的八年級(jí)學(xué)生從放學(xué)時(shí)刻起,經(jīng)過(guò)單個(gè)樓梯口等待人數(shù)y2與時(shí)間為t(分)滿足關(guān)系式y(tǒng)2=﹣4t2+48t﹣96(0≤t≤12).若在單個(gè)樓梯口等待人數(shù)超過(guò)80人,就會(huì)出現(xiàn)安全隱患.
(1)試寫出七年級(jí)學(xué)生在單個(gè)樓梯口等待的人數(shù)y1(人)和從放學(xué)時(shí)刻起的時(shí)間t(分)之間的函數(shù)關(guān)系式,并指出t的取值范圍.
(2)若七、八年級(jí)學(xué)生同時(shí)放學(xué),試計(jì)算等待人數(shù)超過(guò)80人所持續(xù)的時(shí)間.
(3)為了避免出現(xiàn)安全隱患,該校采取讓七年級(jí)學(xué)生提前放學(xué)措施,要使單個(gè)樓梯口等待人數(shù)不超過(guò)80人,則七年級(jí)學(xué)生至少比八年級(jí)提前幾分鐘放學(xué)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以AOB的頂點(diǎn)O為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長(zhǎng)為半徑畫弧,兩弧在AOB內(nèi)部交于點(diǎn)E,過(guò)點(diǎn)E作射線OE,連CD.則下列說(shuō)法錯(cuò)誤的是

A.射線OEAOB的平分線

BCOD是等腰三角形

CCD兩點(diǎn)關(guān)于OE所在直線對(duì)稱

DO、E兩點(diǎn)關(guān)于CD所在直線對(duì)稱

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DEABE,則下列結(jié)論:①DECD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+ACAB,其中正確的是(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,ABC中,AB=AC,BAC=90°,點(diǎn)D是直線AB上的一動(dòng)點(diǎn)(不和A、B重合),BECDE,交直線ACF.

1)點(diǎn)D在邊AB上時(shí),試探究線段BD、ABAF的數(shù)量關(guān)系,并證明你的結(jié)論;

2)點(diǎn)DAB的延長(zhǎng)線或反向延長(zhǎng)線上時(shí),(1)中的結(jié)論是否成立?若不成立,請(qǐng)直接寫出正確結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形OABC中,已知點(diǎn)A、C兩點(diǎn)的坐標(biāo)為A (,),C (2,0).

(1)求點(diǎn)B的坐標(biāo).

(2)將平行四邊形OABC向左平移個(gè)單位長(zhǎng)度,求所得四邊形A′B′C′O′四個(gè)頂點(diǎn)的坐標(biāo).

(3)求平行四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一樓房AB后有一假山,其坡度為i=1: ,山坡坡面上E點(diǎn)處有一休息亭,測(cè)得假山坡腳C與樓房水平距離BC=25米,與亭子距離CE=20米,小麗從樓房頂測(cè)得E點(diǎn)的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=15,點(diǎn)E是AD邊上一點(diǎn),連接BE,把△ABE沿BE折疊,使點(diǎn)A落在點(diǎn)A′處,點(diǎn)F是CD邊上一點(diǎn),連接EF,把△DEF沿EF折疊,使點(diǎn)D落在直線EA′上的點(diǎn)D′處,當(dāng)點(diǎn)D′落在BC邊上時(shí),AE的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案