【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,點(diǎn)E是AC的中點(diǎn).
(1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為2,∠B=50°,AC=6,求圖中陰影部分的面積.
【答案】(1)直線DE與⊙O相切,見解析;(2)6-π
【解析】
(1)連接OE、OD,根據(jù)切線的性質(zhì)得到∠OAC=90°,根據(jù)三角形中位線定理得到OE∥BC,證明△AOE≌△DOE,根據(jù)全等三角形的性質(zhì)、切線的判定定理證明;
(2)根據(jù)扇形的面積公式計(jì)算即可.
解:(1)直線DE與⊙O相切,
理由如下:連接OE、OD,如圖,
∵AC是⊙O的切線,
∴AB⊥AC,
∴∠OAC=90°,
∵點(diǎn)E是AC的中點(diǎn),O點(diǎn)為AB的中點(diǎn),
∴OE∥BC,
∴∠1=∠B,∠2=∠3,
∵OB=OD,
∴∠B=∠3,
∴∠1=∠2,
在△AOE和△DOE中,
∴△AOE≌△DOE(SAS)
∴∠ODE=∠OAE=90°,
∴DE⊥OD,
∵OD為⊙O的半徑,
∴DE為⊙O的切線;
(2)∵DE、AE是⊙O的切線,
∴DE=AE,
∵點(diǎn)E是AC的中點(diǎn),
∴AE=AC=3,
∠AOD=2∠B=2×50°=100°,
∴圖中陰影部分的面積=2××2×3﹣=6-π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】注意:為了使同學(xué)們更好地解答本題的第(Ⅱ)問,我們提供了一種分析問題的方法,你可以依照這個(gè)方法按要求完成本題的解答,也可以選用其他方法,按照解答題的一般要求進(jìn)行解答即可.
如圖,將一個(gè)矩形紙片,放置在平面直角坐標(biāo)系中,,,,是邊上一點(diǎn),將沿直線折疊,得到.
(Ⅰ)當(dāng)平分時(shí),求的度數(shù)和點(diǎn)的坐標(biāo);
(Ⅱ)連接,當(dāng)時(shí),求的面積;
(Ⅲ)當(dāng)射線交線段于點(diǎn)時(shí),求的最大值.(直接寫出答案)
在研究第(Ⅱ)問時(shí),師生有如下對(duì)話:
師:我們可以嘗試通過加輔助線,構(gòu)造出直角三角形,尋找方程的思路來解決問題.
小明:我是這樣想的,延長(zhǎng)與軸交于點(diǎn),于是出現(xiàn)了.
小雨:我和你想的不一樣,我過點(diǎn)作軸的平行線,出現(xiàn)了兩個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點(diǎn)在軸的正半軸上,.對(duì)角線相交于點(diǎn),反比例函數(shù)的圖像經(jīng)過點(diǎn),分別與交于點(diǎn).
(1)若,求的值;
(2)連接,若,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對(duì)稱軸是x=-1.且過點(diǎn)(,0),有下列結(jié)論:
①abc>0;②a-2b+4c=0;③25a-10b+4c=0;④3b+2c>0;⑤a-bm≥(am-b);其中所有正確的結(jié)論有( )個(gè).
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E為邊CD的中點(diǎn),若菱形ABCD的周長(zhǎng)為16,∠BAD=60°,則△OCE的面積是( )
A. B. 2 C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)的圖象的一部分,給出下列命題,其中正確的命題是( )(1);(2);(3)的兩根分別-3和1;(4);
A.(1)(2)B.(2)(3)C.(1)(3)D.(1)(3)(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角△ABC中,AB=AC,邊BC長(zhǎng)為6,高AD長(zhǎng)為4,正方形PQMN的兩個(gè)頂點(diǎn)在△ABC一邊上,另兩個(gè)頂點(diǎn)分別在△ABC的另兩邊上,則正方形PQMN的邊長(zhǎng)為( 。
A.B.或
C.或D.或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD頂點(diǎn)B(﹣1,﹣1),C在x軸正半軸上,A在第二象限雙曲線y=﹣上,過D作DE∥x軸交雙曲線于E,連接CE,則△CDE的面積為( )
A.3B.C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實(shí)驗(yàn)的結(jié)果
下面有三個(gè)推斷:
①當(dāng)拋擲次數(shù)是100時(shí),計(jì)算機(jī)記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;
②隨著試驗(yàn)次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“正面向上”的概率是0.5;
③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)拋擲次數(shù)為150時(shí),“正面向上”的頻率一定是0.45.
其中合理的是( )
A.①B.②C.①②D.①③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com