【題目】如圖,在線段AB上取一點C(非中點),分別以AC、BC為邊在AB的同側(cè)作等邊△ACD和等邊△BCE,連接AE交CD于點F,連接BD交CE于點G,AE和BD交于點H.
(1)求證:△ACE≌△DCB
(2)求∠BHE的度數(shù)
【答案】(1)證明見解析;(2)∠BHE=60°.
【解析】
(1)先由△ACD和△BCE是等邊三角形,可知AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,故可得出∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,根據(jù)SAS定理即可得△ACE≌△DCB;
(2)利用全等三角形對應(yīng)角相等得到∠CAE=∠DCB,利用外角性質(zhì)及等量代換即可求出∠BHE的度數(shù).
(1)∵△ACD,△ECB是等邊三角形,
∴AC=DC,EC=BC,∠ACD=∠ECB=60°,
∵∠ACE=∠ACD+∠DCE,∠BCD=∠BCE+∠DCE,∠ACD=∠BCE=60°,
∴∠ACE=∠BCD,
在△ACE和△DCB中,
,
∴△ACE≌△DCB(SAS);
(2)∵△ACE≌△DCB,
∴∠CAE=∠CDB,
∵∠ACD=∠CDB+∠CBD,∠ACD=60°,
∴∠CAE+∠CBD=60°,
∴∠BHE=∠CAE+∠CBD=60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b,c是△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個相等的實數(shù)根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個根,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a∥b,依次有3個三角形放置在上面,它們分別是等邊三角形、等腰直角三角形、含30°角的直角三角形,直接填寫出∠1、∠2、∠3 的度數(shù).
∠1= °;∠2= °;∠3= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點D是BC的中點,將△ABD沿AD翻折得到△AED,連CE,則線段CE的長等于( 。
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于點E,且四邊形ABCD的面積為144,則BE________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點,且經(jīng)過點,與軸分別交于兩點.
(1)求直線和該拋物線的解析式;
(2)如圖1,點是拋物線上的一個動點,且在直線的上方,過點作軸的平行線與直線交于點,求的最大值;
(3)如圖2,軸交軸于點,點是拋物線上、之間的一個動點,直線、與分別交于、,當(dāng)點運動時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖反映的過程是小明從家去食堂吃早餐,接著去圖書館讀報,然后回家,其中x表示時間,y表示小明離家的距離,小明家、食堂、圖書館在同一直線上,根據(jù)圖中提供的信息,下列說法正確的是( )
A.食堂離小明家2.4km
B.小明在圖書館呆了20min
C.小明從圖書館回家的平均速度是0.04km/min
D.圖書館在小明家和食堂之間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠xOy=90°,線段AB=10,若點A在Oy上滑動,點B隨著線段AB在射線Ox上滑動(A,B與O不重合),Rt△AOB的內(nèi)切圓☉K分別與OA,OB,AB切于點E,F(xiàn),P.
(1)在上述變化過程中,Rt△AOB的周長,☉K的半徑,△AOB外接圓半徑,這幾個量中不會發(fā)生變化的是什么?并簡要說明理由.
(2)當(dāng)AE=4時,求☉K的半徑r.
(3)當(dāng)Rt△AOB的面積為S,AE為x,試求S與x之間的函數(shù)關(guān)系,并求出S最大時直角邊OA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司對一種新型產(chǎn)品的產(chǎn)銷情況進(jìn)行了營銷調(diào)查,發(fā)現(xiàn)年產(chǎn)量為x(噸)時,所需的成本y(萬元)與(x2+60x+800)成正比例,投入市場后當(dāng)年能全部售出且發(fā)現(xiàn)每噸的售價p(單位:萬元)由基礎(chǔ)價與浮動價兩部分組成,其中基礎(chǔ)價是固定不變的,浮動價與x成正比例,比例系數(shù)為-.在營銷中發(fā)現(xiàn)年產(chǎn)量為20噸時,所需的成本是240萬元,并且年銷售利潤W(萬元)的最大值為55萬元.(注:年利潤=年銷售額-成本)
(1)求y(萬元)與x(噸)之間滿足的函數(shù)解析式;
(2)求年銷售利潤W與年產(chǎn)量x(噸)之間滿足的函數(shù)解析式;
(3)當(dāng)年銷售利潤最大時,每噸的售價是多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com