如圖①,直線l:y=mx+n(m>0,n<0)與x,y軸分別相交于A,B兩點,將△AOB繞點O逆時針旋轉90°,得到△COD,過點A,B,D的拋物線P叫做l的關聯(lián)拋物線,而l叫做P的關聯(lián)直線.
(1)若l:y=﹣2x+2,則P表示的函數(shù)解析式為 ;若P:y=﹣x2﹣3x+4,則l表示的函數(shù)解析式為 .
(2)求P的對稱軸(用含m,n的代數(shù)式表示);
(3)如圖②,若l:y=﹣2x+4,P的對稱軸與CD相交于點E,點F在l上,點Q在P的對稱軸上.當以點C,E,Q,F(xiàn)為頂點的四邊形是以CE為一邊的平行四邊形時,求點Q的坐標;
(4)如圖③,若l:y=mx﹣4m,G為AB中點,H為CD中點,連接GH,M為GH中點,連接OM.若OM=,直接寫出l,P表示的函數(shù)解析式.
(1)y=﹣x2﹣x+2;y=﹣4x+4.
(2)P的對稱軸為x=﹣.
(3)點Q坐標為Q1(﹣1,)、Q2(﹣1,).
(4)l表示的函數(shù)解析式為:y=﹣2x+4;P:y=﹣x2﹣x+8.
【解析】
試題分析:(1)若l:y=﹣2x+2,求出點A、B、D的坐標,利用待定系數(shù)法求出P表示的函數(shù)解析式;若P:y=﹣x2﹣3x+4,求出點D、A、B的坐標,再利用待定系數(shù)法求出l表示的函數(shù)解析式;
(2)根據(jù)已知求得拋物線與x軸交點的坐標,從而求得對稱軸;
(3)以點C,E,Q,F(xiàn)為頂點的四邊形是以CE為一邊的平行四邊形時,則有FQ∥CE,且FQ=CE.以此為基礎,列方程求出點Q的坐標.注意:點Q的坐標有兩個,如答圖1所示,不要漏解;
(4)如答圖2所示,作輔助線,構造等腰直角三角形OGH,求出OG的長度,進而由AB=2OG求出AB的長度,再利用勾股定理求出y=mx﹣4m中m的值,最后分別求出l,P表示的函數(shù)解析式.
試題解析:(1)若l:y=﹣2x+2,則A(1,0),B(0,2).
∵將△AOB繞點O逆時針旋轉90°,得到△COD,
∴D(﹣2,0).
設P表示的函數(shù)解析式為:y=ax2+bx+c,將點A、B、D坐標代入得:
,解得,
∴P表示的函數(shù)解析式為:y=﹣x2﹣x+2;
若P:y=﹣x2﹣3x+4=﹣(x+4)(x﹣1),則D(﹣4,0),A(1,0).
∴B(0,4).
設l表示的函數(shù)解析式為:y=kx+b,將點A、B坐標代入得:
,解得,
∴l(xiāng)表示的函數(shù)解析式為:y=﹣4x+4.
(2)直線l:y=mx+n(m>0,n<0),
令y=0,即mx+n=0,得x=﹣;令x=0,得y=n.
∴A(﹣,0)、B(0,n),
∴D(﹣n,0).
設拋物線對稱軸與x軸的交點為N(x,0),
∵DN=AN,∴﹣﹣x=x﹣(﹣n),
∴2x=﹣n﹣,
∴P的對稱軸為x=﹣.
(3)若l:y=﹣2x+4,則A(2,0)、B(0,4),
∴C(0,2)、D(﹣4,0).
可求得直線CD的解析式為:y=x+2.
由(2)可知,P的對稱軸為x=﹣1.
∵以點C,E,Q,F(xiàn)為頂點的四邊形是以CE為一邊的平行四邊形,
∴FQ∥CE,且FQ=CE.
設直線FQ的解析式為:y=x+b.
∵點E、點C的橫坐標相差1,∴點F、點Q的橫坐標也是相差1.
則|xF﹣(﹣1)|=|xF+1|=1,
解得xF=0或xF=﹣2.
∵點F在直線l:y=﹣2x+4上,∴點F坐標為(0,4)或(﹣2,8).
若F(0,4),則直線FQ的解析式為:y=x+4,當x=﹣1時,y=,∴Q1(﹣1,);
若F(﹣2,8),則直線FQ的解析式為:y=x+9,當x=﹣1時,y=,∴Q2(﹣1,).
∴滿足條件的點Q有2個,如答圖1所示,點Q坐標為Q1(﹣1,)、Q2(﹣1,).
(4)如答圖2所示,連接OG、OH.
∵點G、H為斜邊中點,∴OG=AB,OH=CD.
由旋轉性質可知,AB=CD,OG⊥OH,
∴△OGH為等腰直角三角形.
∵點G為GH中點,∴△OMG為等腰直角三角形,
∴OG=OM=•=2,
∴AB=2OG=4.
∵l:y=mx﹣4m,∴A(4,0),B(0,﹣4m).
在Rt△AOB中,由勾股定理得:OA2+OB2=AB2,即:42+(﹣4m)2=(4)2,
解得:m=﹣2或m=2,
∵點B在y軸正半軸,∴m=2舍去,∴m=﹣2.
∴l(xiāng)表示的函數(shù)解析式為:y=﹣2x+4;
∴B(0,8),D(﹣8,0).又A(4,0),利用待定系數(shù)法求得P:y=﹣x2﹣x+8.
考點:1、二次函數(shù)的圖象與性質;2、待定系數(shù)法;3、旋轉變換;4、平行四邊形
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(四川宜賓卷)數(shù)學(解析版) 題型:解答題
(1)計算:|﹣2|﹣(﹣)0+()﹣1
(2)化簡:(﹣)•.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(四川內江卷)數(shù)學(解析版) 題型:選擇題
如圖,已知A1、A2、A3、…、An、An+1是x軸上的點,且OA1=A1A2=A2A3=…=AnAn+1=1,分別過點A1、A2、A3、…、An、An+1作x軸的垂線交直線y=2x于點B1、B2、B3、…、Bn、Bn+1,連接A1B2、B1A2、B2A3、…、AnBn+1、BnAn+1,依次相交于點P1、P2、P3、…、Pn.△A1B1P1、△A2B2P2、△AnBnPn的面積依次記為S1、S2、S3、…、Sn,則Sn為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(四川內江卷)數(shù)學(解析版) 題型:選擇題
在函數(shù)y=中,自變量x的取值范圍是( 。
A.x≥﹣2且x≠1 B.x≤2且x≠1 C.x≠1 D.x≤﹣2
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(吉林卷)數(shù)學(解析版) 題型:解答題
某校九年級四個數(shù)學活動小組參加測量操場旗桿高度的綜合時間活動,如圖是四個小組在不同位置測量后繪制的示意圖,用測角儀測得旗桿頂端A的仰角級記為α,CD為測角儀的高,測角儀CD的底部C處與旗桿的底部B處之間的距離記為CB,四個小組測量和計算數(shù)據(jù)如下表所示:
組別數(shù)據(jù) | CD的長(m) | BC的長(m) | 仰角α | AB的長(m) |
第一組 | 1.59 | 1.32 | 32° | 9.8 |
第二組 | 1.54 | 13.4 | 31° | 9.6 |
第三組 | 1.57 | 14.1 | 30° | 9.7 |
第四組 | 1.56 | 15.2 | 28° |
|
(1)利用第四組學生測量的數(shù)據(jù),求旗桿AB的高度(精確到0.1m);
(2)四組學生測量旗桿高度的平均值為 m(精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(吉林卷)數(shù)學(解析版) 題型:填空題
如圖,將半徑為3的圓形紙片,按下列順序折疊.若和都經(jīng)過圓心O,則陰影部分的面積是 (結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(北京卷)數(shù)學(解析版) 題型:解答題
如圖,是的直徑,是的中點,的切線交的延長線于點,是的中點,的延長線交切線于點,交于點,連接.
(1)求證:;
(2)若,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(內蒙古呼和浩特卷)數(shù)學(解析版) 題型:選擇題
某商品先按批發(fā)價a元提高10%零售,后又按零售價降低10%出售,則最后的單價是( )
A.a(chǎn)元 B.0.99a元 C.1.21a元 D.0.81a元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com