【題目】如圖,在矩形ABCD中,過(guò)點(diǎn)A的圓O交邊AB于點(diǎn)E,交邊AD于點(diǎn)F,已知AD=5AE=2AF=4.如果以點(diǎn)D為圓心,r為半徑的圓D與圓O有兩個(gè)公共點(diǎn),那么r的取值范圍是______

【答案】

【解析】

因?yàn)橐渣c(diǎn)D為圓心,r為半徑的圓D與圓O有兩個(gè)公共點(diǎn),則圓D與圓O相交,圓心距滿足關(guān)系式:|R-r|<d<R+r,求得圓D與圓O的半徑代入計(jì)算即可.

連接OA、OD,過(guò)O點(diǎn)作ONAE,OMAF.

AN=AE=1AM=AF=2,MD=AD-AM=3

∵四邊形ABCD是矩形

∴∠BAD=ANO=AMO=90°

∴四邊形OMAN是矩形

OM=AN=1

OA=,OD=

∵以點(diǎn)D為圓心,r為半徑的圓D與圓O有兩個(gè)公共點(diǎn),則圓D與圓O相交

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)不僅是一門(mén)學(xué)科,也是一種文化,即數(shù)學(xué)文化.數(shù)學(xué)文化包括數(shù)學(xué)史、數(shù)學(xué)美和數(shù)學(xué)應(yīng)用等多方面.古時(shí)候,在某個(gè)王國(guó)里有一位聰明的大臣,他發(fā)明了國(guó)際象棋,獻(xiàn)給了國(guó)王,國(guó)王從此迷上了下棋,為了對(duì)聰明的大臣表示感謝,國(guó)王答應(yīng)滿足這位大臣的一個(gè)要求.大臣說(shuō):就在這個(gè)棋盤(pán)上放一些米粒吧.格放粒米,第格放粒米,第格放粒米,然后是粒、粒、······一只到第.”“你真傻!就要這么一點(diǎn)米粒?國(guó)王哈哈大笑.大臣說(shuō):就怕您的國(guó)庫(kù)里沒(méi)有這么多米!國(guó)王的國(guó)庫(kù)里真沒(méi)有這么多米嗎?題中問(wèn)題就是求是多少?請(qǐng)同學(xué)們閱讀以下解答過(guò)程就知道答案了.

設(shè),

即:

事實(shí)上,按照這位大臣的要求,放滿一個(gè)棋盤(pán)上的個(gè)格子需要粒米.那么到底多大呢?借助計(jì)算機(jī)中的計(jì)算器進(jìn)行計(jì)算,可知答案是一個(gè)位數(shù): ,這是一個(gè)非常大的數(shù),所以國(guó)王是不能滿足大臣的要求.請(qǐng)用你學(xué)到的方法解決以下問(wèn)題:

我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的倍,則塔的頂層共有多少盞燈?

計(jì)算:

某中學(xué)數(shù)學(xué)社團(tuán)開(kāi)發(fā)了一款應(yīng)用軟件,推出了解數(shù)學(xué)題獲取軟件激活碼的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問(wèn)題的答案:

已知一列數(shù):,其中第一項(xiàng)是,接下來(lái)的兩項(xiàng)是,再接下來(lái)的三項(xiàng)是,以此類推,求滿足如下條件的所有正整數(shù),且這一數(shù)列前項(xiàng)和為的正整數(shù)冪.請(qǐng)直接寫(xiě)出所有滿足條件的軟件激活碼正整數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在的網(wǎng)格內(nèi)填入16的數(shù)字后,使每行、每列、每個(gè)小粗線框中的數(shù)字不重復(fù),則_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的中線,點(diǎn)的中點(diǎn),過(guò)點(diǎn)的延長(zhǎng)線于點(diǎn),連接,添加下列條件仍不能判斷四邊形是菱形的是(

A. B. C. 平分D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到A'B'C,MBC的中點(diǎn),NA'B'的中點(diǎn),連接MN,若BC4,∠ABC60°,則線段MN的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O的半徑長(zhǎng)為2,點(diǎn)A、B、C為圓O上三點(diǎn),弦BC=AO,點(diǎn)DBC的中點(diǎn),

(1)如圖,連接ACOD,設(shè)∠OAC=α,請(qǐng)用α表示∠AOD

(2)如圖,當(dāng)點(diǎn)B的中點(diǎn)時(shí),求點(diǎn)A、D之間的距離:

(3)如果AD的延長(zhǎng)線與圓O交于點(diǎn)E,以O為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為,對(duì)角線AC、BD交于O,且DE∥ACAE∥BD.

1)判斷四邊形AODE的形狀并給予證明;

2)若四邊形AODE的周長(zhǎng)為14,求四邊形AODE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象與y軸的交點(diǎn)為C,與x軸正半軸的交點(diǎn)為A,且tan∠ACO=

1)求二次函數(shù)的解析式;

2P為二次函數(shù)圖象的頂點(diǎn),Q為其對(duì)稱軸上的一點(diǎn),QC平分∠PQO,求Q點(diǎn)坐標(biāo);

3)是否存在實(shí)數(shù)、),當(dāng)時(shí),y的取值范圍為?若存在,直接寫(xiě)在、的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形OABC的頂點(diǎn)Ax軸的負(fù)半軸上,頂點(diǎn)Cy軸上,且AB4POC上一點(diǎn),將BCP沿PB折疊,點(diǎn)C落在第三象限內(nèi)點(diǎn)Q處,BQx軸的交點(diǎn)M恰好為OA的中點(diǎn),且MQ1

1)求點(diǎn)A的坐標(biāo);

2)求折痕PB所對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案