【題目】一條排水管的截面如圖所示.已知排水管的截面圓半徑OB=10,截面圓圓心O到水面的距離OC是6,則水面寬AB是( )
A.16
B.10
C.8
D.6
科目:初中數(shù)學 來源: 題型:
【題目】(1)先化簡,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.
(2)若x2+4x﹣4=0,求3(x﹣2)2﹣6(x+1)(x﹣1)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.
(1)判斷∠ADC是否是直角,并說明理由;
(2)試求四邊形草坪ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線l1:y=﹣x+3與坐標軸分別交于點A,B,與直線l2:y=x交于點C.
(1)求A,B兩點的坐標;
(2)求△BOC的面積;
(3)如圖2,若有一條垂直于x軸的直線l以每秒1個單位的速度從點A出發(fā)沿射線AO方向作勻速滑動,分別交直線l1,l2及x軸于點M,N和Q.設(shè)運動時間為t(s),連接CQ.
①當OA=3MN時,求t的值;
②試探究在坐標平面內(nèi)是否存在點P,使得以O(shè)、Q、C、P為頂點的四邊形構(gòu)成菱形?若存在,請直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB交CD于O,OE⊥AB.
(1)若∠EOD=20°,求∠AOC的度數(shù);
(2)若∠AOC:∠BOC=1:2,求∠EOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小聰和小明沿同一條筆直的馬路同時從學校出發(fā)到某圖書館查閱資料,學校與 圖書館的路程是 千米,小聰騎自行車,小明步行,當小聰從原路回到學校時,小明剛好到 達圖書館,圖中折線 和線段 分別表示兩人離學校的路程 (千米)與所經(jīng)過的 時間 (分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖像回答下列問題:
(1)小聰在圖書館查閱資料的時間為 分鐘;小聰返回學校的速度為 千米/分鐘.
(2)請你求出小明離開學校的路程 (千米)與所經(jīng)過的時間 (分鐘)之間的函數(shù)表達式;
(3)若設(shè)兩人在路上相距不超過 千米時稱為可以“互相望見”,則小聰和小明可以“互相 望見”的時間共有多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△ABC;
(2) 請畫出△ABC關(guān)于原點對稱的△ABC;
(3) 在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣ (x﹣1)2+3與y軸交于點A,頂點為B,對稱軸BC與x軸交于點C.
(1)如圖1.求點A的坐標及線段OC的長;
(2)點P在拋物線上,直線PQ∥BC交x軸于點Q,連接BQ.
①若含45°角的直角三角板如圖2所示放置.其中,一個頂點與點C重合,直角頂點D在BQ上,另一個頂點E在PQ上.求直線BQ的函數(shù)解析式;
②若含30°角的直角三角板一個頂點與點C重合,直角頂點D在直線BQ上,另一個頂點E在PQ上,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com