【題目】如圖,在ABCD中,AC為對(duì)角線,AC=BC=5,AB=6,AE是△ABC的中線.
(1)用無刻度的直尺畫出△ABC的高CH(保留畫圖痕跡);
(2)求△ACE的面積.
【答案】(1)作圖見解析;(2)6.
【解析】(1)如圖,連接BD,BD與AE交于點(diǎn)F,連接CF并延長(zhǎng)到AB,則它與AB的交點(diǎn)即為H.
理由如下:
∵BD、AC是ABCD的對(duì)角線,∴點(diǎn)O是AC的中點(diǎn),∵AE、BO是等腰△ABC兩腰上的中線,∴AE=BO,AO=BE,∵AO=BE,∴△ABO≌△BAE(SSS),∴∠ABO=∠BAE,△ABF中,∵∠FAB=∠FBA,∴FA=FB,∵∠BAC=∠ABC,∴∠EAC=∠OBC,∵AC=BC,∠EAC=∠OBC,F(xiàn)A=FB,可得△AFC≌BFC(SAS),∴∠ACF=∠BCF,即CH是等腰△ABC頂角平分線,所以CH是△ABC的高;
(2)∵AC=BC=5,AB=6,CH⊥AB,∴AH=AB=3,∴CH==4,∴S△ABC=ABCH=×6×4=12,∵AE是△ABC的中線,∴S△ACE=S△ABC=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報(bào)道,目前我國(guó)“天河二號(hào)”超級(jí)計(jì)算機(jī)的運(yùn)算速度位居全球第一,其運(yùn)算速度達(dá)到了每秒338600000億次,數(shù)學(xué)338600000用科學(xué)記數(shù)法可表示為( )
A.3.386×109
B.0.3386×109
C.33.86×107
D.3.386×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點(diǎn)C落在DP(P為AB中點(diǎn))所在的直線上,得到經(jīng)過點(diǎn)D的折痕DE.則∠DEC的大小為( )
A.78°
B.75°
C.60°
D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù):5,7,10,5,7,5,6,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.10和7B.5和7C.5和6D.6和7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=10,對(duì)角線AC=12.若過點(diǎn)A作AE⊥CD,垂足為E,則AE的長(zhǎng)為( )
A.9
B.
C.
D.9.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題提出】
用n根相同的木棒搭一個(gè)三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
【問題探究】
不妨假設(shè)能搭成m種不同的等腰三角形,為探究m與n之間的關(guān)系,我們可以先從特殊入手,通過試驗(yàn)、觀察、類比、最后歸納、猜測(cè)得出結(jié)論.
【探究一】
(1)用3根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?
此時(shí),顯然能搭成一種等腰三角形.
所以,當(dāng)n=3時(shí),m=1.
(2)用4根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?
只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形.
所以,當(dāng)n=4時(shí),m=0.
(3)用5根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?
若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形.
若分成2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形.
所以,當(dāng)n=5時(shí),m=1.
(4)用6根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?
若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形.
若分成2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形.
所以,當(dāng)n=6時(shí),m=1.
綜上所述,可得:表①
【探究二】
(1)用7根相同的木棒搭一個(gè)三角形,能搭成多少種不同的三角形?
(仿照上述探究方法,寫出解答過程,并將結(jié)果填在表②中)
(2)用8根、9根、10根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?
(只需把結(jié)果填在表②中)
表②
你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,…
【問題解決】:
用n根相同的木棒搭一個(gè)三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(設(shè)n分別等于4k﹣1,4k,4k+1,4k+2,其中k是正整數(shù),把結(jié)果填在表③中)
表③
【問題應(yīng)用】:
用2016根相同的木棒搭一個(gè)三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(寫出解答過程),其中面積最大的等腰三角形每腰用了 根木棒.(只填結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O為△ABC的外接圓,圓心O在AB上.
(1)在圖1中,用尺規(guī)作圖作∠BAC的平分線AD交⊙O于D(保留作圖痕跡,不寫作法與證明);
(2)如圖2,設(shè)∠BAC的平分線AD交BC于E,⊙O半徑為5,AC=4,連接OD交BC于F.
①求證:OD⊥BC;
②求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com