【題目】已知拋物線分別是中的對邊。
(1)求證:該拋物線與軸必有兩個交點;
(2)設(shè)拋物線與軸的兩個交點為,頂點為 ,已知的周長為,求拋物線的解析式;
(3)設(shè)直線與拋物線交于點,與軸交于點,拋物線與軸交于點,若拋物線的對稱軸為與的面積之比為,試判斷三角形的形狀,并證明你的結(jié)論。
【答案】(1)見解析;(2);(3)等邊三角形.
【解析】
(1)根據(jù)一元二次方程根的判別式和三角形的三邊關(guān)系可得,即方程有兩個不相等的實數(shù)根,
(2)利用周長的和為10,頂點的縱坐標比上拋物線與x軸的右邊交點橫坐標與頂點橫坐標的差的值為正切值;解方程組求出(a+b)的值和c的值;代入解析式即可
(3)聯(lián)立方程組可得,如圖,設(shè),根據(jù)三角形的面積關(guān)系可得,結(jié)合韋達定理可得,所以三角形是等邊三角形.
(1)證明:在關(guān)于的一元二次方程中,
,
是的邊長, ,
,方程有兩個不相等的實數(shù)根,
拋物線與軸必有兩個交點
(2)解:由,得,
設(shè)拋物線的對稱軸交軸于,如圖, 則,
由,
得,
解得,則,
拋物線的解析式為: ,
(3)解:由,
得,
由題意,得,
則,
如圖,設(shè),
由,得,
,
由(3)得或,
由(2)得,
,
由(1)得,即,
,
為等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】“食品安全”受到全社會的廣泛關(guān)注,濟南市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩份尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題.
(1)接受問卷調(diào)查的學生共有_____人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為_____.
(2)請補全條形統(tǒng)計圖.
(3)若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).
(4)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
【答案】(1)60;90°;(2)補圖見解析;(3)300;(4)
【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應(yīng)扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;(3)用總?cè)藬?shù)乘以“了解”和“基本了解”程度的人數(shù)所占的比例,即可求出達到“了解”和“基本了解”程度的總?cè)藬?shù);(4)根據(jù)題意列出表格,再根據(jù)概率公式即可得出答案.
詳解:(1)60;90°.
(2)補全的條形統(tǒng)計圖如圖所示.
(3)對食品安全知識達到“了解”和“基本了解”的學生所占比例為,由樣本估計總體,該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為.
(4)列表法如表所示,
男生 | 男生 | 女生 | 女生 | |
男生 | 男生男生 | 男生女生 | 男生女生 | |
男生 | 男生男生 | 男生女生 | 男生女生 | |
女生 | 男生女生 | 男生女生 | 女生女生 | |
女生 | 男生女生 | 女生女生 |
所有等可能的情況一共12種,其中選中1個男生和1個女生的情況有8種,所以恰好選中1個男生和1個女生的概率是.
點睛:本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;注意運用概率公式:概率=所求情況數(shù)與總情況數(shù)之比.
【題型】解答題
【結(jié)束】
24
【題目】為響應(yīng)國家全民閱讀的號召,某社區(qū)鼓勵居民到社區(qū)閱覽室借閱讀書,并統(tǒng)計每年的借閱人數(shù)和圖書借閱總量(單位:本),該閱覽室在2015年圖書借閱總量是7500本,2017年圖書借閱總量是10800本.
(1)求該社區(qū)的圖書借閱總量從2015年至2017年的年平均增長率.
(2)已知2017年該社區(qū)居民借閱圖書人數(shù)有1350人,預計2018年達到1440人,如果2017年至2018年圖書借閱總量的增長率不低于2015年至2017年的年平均增長率,設(shè)2018年的人均借閱量比2017年增長a%,求a的值至少是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BD、CE是角平分線,AM⊥BD于點M,AN⊥CE于點N.△ABC的周長為30,BC=12.則MN的長是( )
A. 15B. 9C. 6D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC的中點為O,過點O作,交BC邊于點E,交AD邊于點F,分別連接AE、CF.
(1)求證:四邊形AECF是菱形;
(2)若,,請直接寫出EF的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=4.若動點D在線段AC上(不與點A、C重合),過點D作DE⊥AC交AB邊于點E.點A關(guān)于點D的對稱點為點F,以FC為半徑作⊙C,當DE=_______時,⊙C與直線AB相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3…如此進行下去,則C2019的頂點坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線L:y=﹣x2+bx+c經(jīng)過坐標原點,與它的對稱軸直線x=2交于A點.
(1)直接寫出拋物線的解析式;
(2)⊙A與x軸相切,交y軸于B、C點,交拋物線L的對稱軸于D點,恒過定點的直線y=kx﹣2k+8(k<0)與拋物線L交于M、N點,△AMN的面積等于2,試求:
①弧BC的長;
②k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙P的圓心P(m,n)在拋物線y=上.
(1)寫出m與n之間的關(guān)系式;
(2)當⊙P與兩坐標軸都相切時,求出⊙P的半徑;
(3)若⊙P的半徑是8,且它在x軸上截得的弦MN,滿足0≤MN≤2時,求出m、n的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓上一點,,DH⊥AB于點H,AC分別交BD、DH于E、F.
(1)已知AB=10,AD=6,求AH.
(2)求證:DF=EF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com