【題目】已知關(guān)于x的方程(x+1)(x3)+m0m0)的兩根為ab,且ab,用“<”連接﹣13、a、b的大小關(guān)系為_____

【答案】a<﹣13b

【解析】

由于(x+1)(x-3=-m,于是可把a、b看作拋物線y=x+1)(x-3)與直線y=-m的兩交點(diǎn)的橫坐標(biāo),而拋物線y=x+1)(x-3)與x軸的兩交點(diǎn)坐標(biāo)為(-10),(30),然后畫出函數(shù)圖象,再利用函數(shù)圖象即可得到-13、a、b的大小關(guān)系.

解:∵(x+1)(x3+m0m0),

∴(x+1)(x3)=﹣m,

ab可看作拋物線y=(x+1)(x3)與直線y=﹣m的兩交點(diǎn)的橫坐標(biāo),

∵拋物線y=(x+1)(x3)與x軸的兩交點(diǎn)坐標(biāo)為(﹣1,0),(3,0),如圖,

∴用連接﹣1、3、ab的大小關(guān)系為a<﹣13b

故答案為:a<﹣13b

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測量某建筑物CD的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進(jìn)了40m,此時(shí)自B處測得建筑物頂部的仰角是45°.已知測角儀的高度是1.5m,請你計(jì)算出該建筑物的高度.(結(jié)果精確到1m)(參考數(shù)據(jù):1.7321.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點(diǎn)A(﹣1,0)和B20),直線yx+m經(jīng)過點(diǎn)A和拋物線的另一個(gè)交點(diǎn)為C

1)求拋物線的解析式.

2)動(dòng)點(diǎn)P、Q從點(diǎn)A出發(fā),分別沿線段AC和射線AO運(yùn)動(dòng),運(yùn)動(dòng)的速度分別是每秒4個(gè)單位長度和3個(gè)單位長度.連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒,APQ的面積為s,求st的函數(shù)關(guān)系式.(不寫t的取值范圍)

3)在(2)的條件下,線段PQ交拋物線于點(diǎn)D,點(diǎn)E在線段AP上,且AEAQ,連接ED,過點(diǎn)DDFDEx軸于點(diǎn)F,當(dāng)DFDE時(shí),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.

(1)求拋物線的表達(dá)式;

(2)設(shè)拋物線的對稱軸為l,lx軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

(3)如圖2,連接BC,PB,PC,設(shè)PBC的面積為S.

①求S關(guān)于t的函數(shù)表達(dá)式;

②求P點(diǎn)到直線BC的距離的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,□ABCD中,AB⊥AC,AB1,BC.對角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)EF

(1)試說明在旋轉(zhuǎn)過程中,線段AFEC總保持相等;

(2)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,請直接寫出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸上,頂點(diǎn)B在第一象限,AB=1.將線段OA繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過P,B兩點(diǎn),則k的值為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń夥匠蹋?/span>

(1)  

(2) - 2x5

(3) x 2 -4x+20

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AD為⊙O的直徑,ADBC相交于點(diǎn)E,且BECE

1)請判斷ADBC的位置關(guān)系,并說明理由;

2)若BC6,ED2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 ABC 的三個(gè)頂點(diǎn)的坐標(biāo)分別為 A(-2,3)、B(-6,0)C(-1,0).

1)將ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn) 90°. 畫出圖形,直接寫出點(diǎn)B的對應(yīng)點(diǎn)的坐標(biāo);

2)請直接寫出:以 A、B、C 為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn) D 的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案