【題目】1)計算:﹣32+|25|÷+(﹣23×(﹣12015

2)解方程:=3

(3)解方程:6(x-2)=8x+3.

(4)解方程: x-=2-.

【答案】112x=5(3)x=(4)x=

【解析】

1)根據(jù)有理數(shù)的混合運算法則即可求解;

2)先把分母變成整數(shù),去分母,移項合并,系數(shù)化為1即可求解;

3)去括號,移項合并,系數(shù)化為1即可求解;

4)先去分母,再去括號,移項合并,系數(shù)化為1即可求解;

1)﹣32+|25|÷+(﹣23×(﹣12015

=-9+3×+8×1

=-9+2+8

=1

2=3

-=3

5x-10-2x-2=3

3x=15

x=5

(3)6(x-2)=8x+3.

6x-12=8x+3

-2x=15

x=

(4) x-=2-.

6x-3(x-1)=12-(x+2)

6x-3x+3=12-x-2

4x=7

x=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,過點C的直線MNABDAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CD、BE

1)求證:CEAD

2)當(dāng)DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠BAC=90°,將△ABC繞點C逆時針旋轉(zhuǎn),旋轉(zhuǎn)后的圖形是△A′B′C,點A的對應(yīng)點A′落在中線AD上,且點A′△ABC的重心,A′B′BC相交于點E,那么BECE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點D是正方形OABC的邊AB上的動點,OC6.以AD為一邊在AB的右側(cè)作正方形ADEF,連結(jié)BFDEP點.

1)請直接寫出點A、B的坐標(biāo);

2)在點D的運動過程中,ODBF是否存在特殊的位置關(guān)系?若存在,試寫出ODBF的位置關(guān)系,并證明;若不存在,請說明理由.

3)當(dāng)P點為線段DE的三等分點時,試求出AF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

(1)如圖1,點A為線段BC外一動點,且BC=a,AB=b,填空:當(dāng)點A位于   時,線段AC的長取得最大值,且最大值為   (用含a,b的式子表示).

問題探究

(2)點A為線段BC外一動點,且BC=6,AB=3,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE,找出圖中與BE相等的線段,請說明理由,并直接寫出線段BE長的最大值.

問題解決:

(3)①如圖3,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,BPM=90°,求線段AM長的最大值及此時點P的坐標(biāo).

如圖4,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若對角線BDCD于點D,請直接寫出對角線AC的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數(shù)y=x的圖象上,從左向右第3個正方形中的一個頂點A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn,則Sn的值為__.(用含n的代數(shù)式表示,n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平行四邊形 ABCD中,O是CD的中點,連接AO并延長,交BC的延長線于點E.

(1)求證:△AOD ≌ △EOC;

(2)連接AC,DE,當(dāng)∠B∠AEB _______ °時,四邊形ACED是正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶市的重大惠民工程﹣﹣公租房建設(shè)已陸續(xù)竣工,計劃10年內(nèi)解決低收入人群的住房問題,前6年,每年竣工投入使用的公租房面積y(單位:百萬平方米),與時間x的關(guān)系是y=x+5,(x單位:年,1≤x≤6且x為整數(shù));后4年,每年竣工投入使用的公租房面積y(單位:百萬平方米),與時間x的關(guān)系是y=-x+(x單位:年,7≤x≤10且x為整數(shù)).假設(shè)每年的公租房全部出租完.另外,隨著物價上漲等因素的影響,每年的租金也隨之上調(diào),預(yù)計,第x年投入使用的公租房的租金z(單位:元/m2)與時間x(單位:年,1≤x≤10且x為整數(shù))滿足一次函數(shù)關(guān)系如下表:

z(元/m2

50

52

54

56

58

x(年)

1

2

3

4

5

(1)求出z與x的函數(shù)關(guān)系式;

(2)求政府在第幾年投入的公租房收取的租金最多,最多為多少百萬元;

(3)若第6年竣工投入使用的公租房可解決20萬人的住房問題,政府計劃在第10年投入的公租房總面積不變的情況下,要讓人均住房面積比第6年人均住房面積提高a%,這樣可解決住房的人數(shù)將比第6年減少1.35a%,求a的值.

(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市高中招生體育考試前教育部門為了解全市九年級男生考試項目的選擇情況(每人限選一項),對全市部分九年級男生進(jìn)行了調(diào)查,將調(diào)查結(jié)果分成五類:A、實心球(2kg);B、立定跳遠(yuǎn);C、50米跑;D、半場運球;E、其它.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)將上面的條形統(tǒng)計圖補充完整;

(2)假定全市九年級畢業(yè)學(xué)生中有5500名男生,試估計全市九年級男生中選“50米跑”的人數(shù)有多少人?

(3)甲、乙兩名九年級男生在上述選擇率較高的三個項目:B、立定跳遠(yuǎn);C、50米跑;D、半場運球中各選一項,同時選擇半場運球和立定跳遠(yuǎn)的概率是多少?請用列表法或畫樹形圖的方法加以說明并列出所有等可能的結(jié)果.

查看答案和解析>>

同步練習(xí)冊答案